Upload InternVL2 implementation
Browse files- Dockerfile +18 -0
- app_internvl2.py +57 -1
Dockerfile
CHANGED
|
@@ -6,6 +6,8 @@ ENV PYTHONUNBUFFERED=1
|
|
| 6 |
ENV HF_HOME=/app/.cache/huggingface
|
| 7 |
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface/transformers
|
| 8 |
ENV MPLCONFIGDIR=/tmp/matplotlib
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Create necessary directories with proper permissions
|
| 11 |
RUN mkdir -p /app/.cache/huggingface/transformers && \
|
|
@@ -23,11 +25,24 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
| 23 |
python3-pip \
|
| 24 |
python3-dev \
|
| 25 |
python3-setuptools \
|
|
|
|
| 26 |
&& rm -rf /var/lib/apt/lists/*
|
| 27 |
|
| 28 |
# Create a working directory
|
| 29 |
WORKDIR /app
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Copy requirements file
|
| 32 |
COPY requirements.txt .
|
| 33 |
|
|
@@ -63,5 +78,8 @@ RUN mkdir -p gradio_cached_examples && \
|
|
| 63 |
# Make port 7860 available for the app
|
| 64 |
EXPOSE 7860
|
| 65 |
|
|
|
|
|
|
|
|
|
|
| 66 |
# Start the application
|
| 67 |
CMD ["python3", "app_internvl2.py"]
|
|
|
|
| 6 |
ENV HF_HOME=/app/.cache/huggingface
|
| 7 |
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface/transformers
|
| 8 |
ENV MPLCONFIGDIR=/tmp/matplotlib
|
| 9 |
+
# Force PyTorch to use the NCCl backend
|
| 10 |
+
ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128
|
| 11 |
|
| 12 |
# Create necessary directories with proper permissions
|
| 13 |
RUN mkdir -p /app/.cache/huggingface/transformers && \
|
|
|
|
| 25 |
python3-pip \
|
| 26 |
python3-dev \
|
| 27 |
python3-setuptools \
|
| 28 |
+
nvidia-cuda-toolkit \
|
| 29 |
&& rm -rf /var/lib/apt/lists/*
|
| 30 |
|
| 31 |
# Create a working directory
|
| 32 |
WORKDIR /app
|
| 33 |
|
| 34 |
+
# Add a script to check GPU status at startup
|
| 35 |
+
RUN echo '#!/bin/bash \n\
|
| 36 |
+
echo "Checking NVIDIA GPU status..." \n\
|
| 37 |
+
if ! command -v nvidia-smi &> /dev/null; then \n\
|
| 38 |
+
echo "WARNING: nvidia-smi command not found. NVIDIA driver might not be installed." \n\
|
| 39 |
+
else \n\
|
| 40 |
+
echo "NVIDIA driver found. Running nvidia-smi:" \n\
|
| 41 |
+
nvidia-smi \n\
|
| 42 |
+
fi \n\
|
| 43 |
+
exec "$@"' > /entrypoint.sh && \
|
| 44 |
+
chmod +x /entrypoint.sh
|
| 45 |
+
|
| 46 |
# Copy requirements file
|
| 47 |
COPY requirements.txt .
|
| 48 |
|
|
|
|
| 78 |
# Make port 7860 available for the app
|
| 79 |
EXPOSE 7860
|
| 80 |
|
| 81 |
+
# Use our entrypoint script to check GPU status before starting the app
|
| 82 |
+
ENTRYPOINT ["/entrypoint.sh"]
|
| 83 |
+
|
| 84 |
# Start the application
|
| 85 |
CMD ["python3", "app_internvl2.py"]
|
app_internvl2.py
CHANGED
|
@@ -41,10 +41,31 @@ warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
|
|
| 41 |
warnings.filterwarnings("ignore", message=".*Torch is not compiled with CUDA enabled.*")
|
| 42 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
# Global variables
|
| 45 |
internvl2_pipeline = None
|
| 46 |
MODEL_LOADED = False
|
| 47 |
-
USE_GPU =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# Check if lmdeploy is available and try to import
|
| 50 |
try:
|
|
@@ -71,6 +92,12 @@ def load_internvl2_model():
|
|
| 71 |
print("lmdeploy not available. Using demo placeholder.")
|
| 72 |
MODEL_LOADED = False
|
| 73 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
print("Loading InternVL2 model...")
|
| 76 |
try:
|
|
@@ -91,6 +118,8 @@ def load_internvl2_model():
|
|
| 91 |
print(f"Error loading InternVL2 model: {str(e)}")
|
| 92 |
if "CUDA out of memory" in str(e):
|
| 93 |
print("Not enough GPU memory for the model")
|
|
|
|
|
|
|
| 94 |
MODEL_LOADED = False
|
| 95 |
return False
|
| 96 |
|
|
@@ -104,6 +133,12 @@ def analyze_image(image, prompt):
|
|
| 104 |
return ("This is a demo placeholder. The actual model couldn't be loaded because lmdeploy "
|
| 105 |
"is not properly installed. Check your installation and dependencies.")
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
# Make sure the model is loaded
|
| 108 |
if not load_internvl2_model():
|
| 109 |
return "Couldn't load InternVL2 model. See logs for details."
|
|
@@ -164,9 +199,13 @@ def create_interface():
|
|
| 164 |
gr.Markdown("# Image Analysis with InternVL2-40B")
|
| 165 |
gr.Markdown("Upload an image to analyze it using the InternVL2-40B model.")
|
| 166 |
|
|
|
|
| 167 |
if not LMDEPLOY_AVAILABLE:
|
| 168 |
gr.Markdown("⚠️ **WARNING**: lmdeploy is not properly installed. This demo will not function correctly.", elem_classes=["warning-message"])
|
| 169 |
|
|
|
|
|
|
|
|
|
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column(scale=1):
|
| 172 |
input_image = gr.Image(type="pil", label="Upload Image")
|
|
@@ -176,9 +215,15 @@ def create_interface():
|
|
| 176 |
value="general"
|
| 177 |
)
|
| 178 |
submit_btn = gr.Button("Analyze Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
with gr.Column(scale=2):
|
| 181 |
output_text = gr.Textbox(label="Analysis Result", lines=20)
|
|
|
|
|
|
|
| 182 |
|
| 183 |
submit_btn.click(
|
| 184 |
fn=process_image,
|
|
@@ -195,6 +240,17 @@ def create_interface():
|
|
| 195 |
- **Technical**: Technical analysis identifying objects and spatial relationships
|
| 196 |
""")
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
# Examples
|
| 199 |
try:
|
| 200 |
gr.Examples(
|
|
|
|
| 41 |
warnings.filterwarnings("ignore", message=".*Torch is not compiled with CUDA enabled.*")
|
| 42 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 43 |
|
| 44 |
+
# Check for actual GPU availability
|
| 45 |
+
def check_gpu_availability():
|
| 46 |
+
"""Check if GPU is actually available and working"""
|
| 47 |
+
if not torch.cuda.is_available():
|
| 48 |
+
print("CUDA is not available in PyTorch")
|
| 49 |
+
return False
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
# Try to initialize CUDA and run a simple operation
|
| 53 |
+
x = torch.rand(10, device="cuda")
|
| 54 |
+
y = x + x
|
| 55 |
+
return True
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"GPU initialization failed: {str(e)}")
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
# Global variables
|
| 61 |
internvl2_pipeline = None
|
| 62 |
MODEL_LOADED = False
|
| 63 |
+
USE_GPU = check_gpu_availability()
|
| 64 |
+
|
| 65 |
+
if USE_GPU:
|
| 66 |
+
print("GPU is available and working properly")
|
| 67 |
+
else:
|
| 68 |
+
print("WARNING: GPU is not available or not working properly. This application requires GPU acceleration.")
|
| 69 |
|
| 70 |
# Check if lmdeploy is available and try to import
|
| 71 |
try:
|
|
|
|
| 92 |
print("lmdeploy not available. Using demo placeholder.")
|
| 93 |
MODEL_LOADED = False
|
| 94 |
return False
|
| 95 |
+
|
| 96 |
+
# Check if GPU is available
|
| 97 |
+
if not USE_GPU:
|
| 98 |
+
print("Cannot load InternVL2 model without GPU acceleration.")
|
| 99 |
+
MODEL_LOADED = False
|
| 100 |
+
return False
|
| 101 |
|
| 102 |
print("Loading InternVL2 model...")
|
| 103 |
try:
|
|
|
|
| 118 |
print(f"Error loading InternVL2 model: {str(e)}")
|
| 119 |
if "CUDA out of memory" in str(e):
|
| 120 |
print("Not enough GPU memory for the model")
|
| 121 |
+
elif "Found no NVIDIA driver" in str(e):
|
| 122 |
+
print("NVIDIA GPU driver not found or not properly configured")
|
| 123 |
MODEL_LOADED = False
|
| 124 |
return False
|
| 125 |
|
|
|
|
| 133 |
return ("This is a demo placeholder. The actual model couldn't be loaded because lmdeploy "
|
| 134 |
"is not properly installed. Check your installation and dependencies.")
|
| 135 |
|
| 136 |
+
# Check for GPU
|
| 137 |
+
if not USE_GPU:
|
| 138 |
+
return ("ERROR: This application requires a GPU to run InternVL2. "
|
| 139 |
+
"The NVIDIA driver was not detected on this system. "
|
| 140 |
+
"Please make sure this Space is using a GPU-enabled instance.")
|
| 141 |
+
|
| 142 |
# Make sure the model is loaded
|
| 143 |
if not load_internvl2_model():
|
| 144 |
return "Couldn't load InternVL2 model. See logs for details."
|
|
|
|
| 199 |
gr.Markdown("# Image Analysis with InternVL2-40B")
|
| 200 |
gr.Markdown("Upload an image to analyze it using the InternVL2-40B model.")
|
| 201 |
|
| 202 |
+
# Show warnings based on system status
|
| 203 |
if not LMDEPLOY_AVAILABLE:
|
| 204 |
gr.Markdown("⚠️ **WARNING**: lmdeploy is not properly installed. This demo will not function correctly.", elem_classes=["warning-message"])
|
| 205 |
|
| 206 |
+
if not USE_GPU:
|
| 207 |
+
gr.Markdown("🚫 **ERROR**: NVIDIA GPU not detected. This application requires GPU acceleration to run InternVL2 model.", elem_classes=["error-message"])
|
| 208 |
+
|
| 209 |
with gr.Row():
|
| 210 |
with gr.Column(scale=1):
|
| 211 |
input_image = gr.Image(type="pil", label="Upload Image")
|
|
|
|
| 215 |
value="general"
|
| 216 |
)
|
| 217 |
submit_btn = gr.Button("Analyze Image")
|
| 218 |
+
|
| 219 |
+
# Disable button if GPU is not available
|
| 220 |
+
if not USE_GPU:
|
| 221 |
+
submit_btn.interactive = False
|
| 222 |
|
| 223 |
with gr.Column(scale=2):
|
| 224 |
output_text = gr.Textbox(label="Analysis Result", lines=20)
|
| 225 |
+
if not USE_GPU:
|
| 226 |
+
output_text.value = "ERROR: NVIDIA GPU driver not detected. This application requires GPU acceleration to run the InternVL2 model. Please ensure this Space is using a GPU-enabled instance."
|
| 227 |
|
| 228 |
submit_btn.click(
|
| 229 |
fn=process_image,
|
|
|
|
| 240 |
- **Technical**: Technical analysis identifying objects and spatial relationships
|
| 241 |
""")
|
| 242 |
|
| 243 |
+
# Hardware requirements notice
|
| 244 |
+
gr.Markdown("""
|
| 245 |
+
## System Requirements
|
| 246 |
+
This application requires:
|
| 247 |
+
- NVIDIA GPU with CUDA support
|
| 248 |
+
- At least 16GB of GPU memory recommended
|
| 249 |
+
- GPU drivers properly installed and configured
|
| 250 |
+
|
| 251 |
+
If you're running this on Hugging Face Spaces, make sure to select a GPU-enabled hardware type.
|
| 252 |
+
""")
|
| 253 |
+
|
| 254 |
# Examples
|
| 255 |
try:
|
| 256 |
gr.Examples(
|