Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load the model
|
| 5 |
+
model_name = "maiurilorenzo/misogyny-detection-it"
|
| 6 |
+
classifier = pipeline("text-classification", model=model_name)
|
| 7 |
+
|
| 8 |
+
# Define the prediction function
|
| 9 |
+
def detect_misogyny(text):
|
| 10 |
+
result = classifier(text)
|
| 11 |
+
label = result[0]["label"]
|
| 12 |
+
score = result[0]["score"]
|
| 13 |
+
label_readable = "Misogynistic" if label == "LABEL_1" else "Non-Misogynistic"
|
| 14 |
+
return f"Label: {label_readable} (Confidence: {score:.2f})"
|
| 15 |
+
|
| 16 |
+
# Create the Gradio interface
|
| 17 |
+
demo = gr.Interface(
|
| 18 |
+
fn=detect_misogyny,
|
| 19 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter Italian text here..."),
|
| 20 |
+
outputs="text",
|
| 21 |
+
title="Misogyny Detection in Italian",
|
| 22 |
+
description="This demo uses a fine-tuned BERT model to detect misogynistic content in Italian text. Enter a phrase or sentence, and the model will classify it as 'Misogynistic' or 'Non-Misogynistic' along with a confidence score.",
|
| 23 |
+
article="""
|
| 24 |
+
### About the Model
|
| 25 |
+
This model is fine-tuned on the AMI (Automatic Misogyny Identification) dataset for binary classification of misogynistic content in Italian.
|
| 26 |
+
- **Labels:**
|
| 27 |
+
- `1`: Misogynistic
|
| 28 |
+
- `0`: Non-Misogynistic
|
| 29 |
+
- **Source Model:** [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased)
|
| 30 |
+
"""
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
demo.launch()
|