Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,35 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torchvision.transforms as T
|
| 3 |
from models import build_model
|
| 4 |
-
import os
|
| 5 |
import torch
|
| 6 |
import misc as utils
|
| 7 |
import numpy as np
|
| 8 |
import torch.nn.functional as F
|
| 9 |
-
import matplotlib.colors
|
| 10 |
from torchvision.io import read_video
|
| 11 |
import torchvision.transforms.functional as Func
|
| 12 |
from ruamel.yaml import YAML
|
| 13 |
from easydict import EasyDict
|
| 14 |
from misc import nested_tensor_from_videos_list
|
| 15 |
from torch.cuda.amp import autocast
|
| 16 |
-
from PIL import Image, ImageDraw
|
| 17 |
-
from rich.progress import track
|
| 18 |
import imageio.v3 as iio
|
| 19 |
-
import imageio
|
| 20 |
import cv2
|
| 21 |
-
import warnings
|
| 22 |
import tempfile
|
| 23 |
import argparse
|
| 24 |
import time
|
| 25 |
from huggingface_hub import hf_hub_download
|
| 26 |
|
| 27 |
-
warnings.filterwarnings("ignore")
|
| 28 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
so_path = "models/GroundingDINO/ops/MultiScaleDeformableAttention.cpython-39-x86_64-linux-gnu.so"
|
| 33 |
-
if not os.path.exists(so_path):
|
| 34 |
-
# print("Building MultiScaleDeformableAttention module...")
|
| 35 |
-
# subprocess.run(["python", "setup.py", "build_ext", "--inplace"], cwd="models/GroundingDINO/ops", check=True)
|
| 36 |
-
os.system("python models/GroundingDINO/ops/setup.py build_ext develop --user")
|
| 37 |
|
| 38 |
# Transform for video frames
|
| 39 |
transform = T.Compose([
|
|
@@ -50,7 +46,7 @@ color_list = color_list.astype('uint8').tolist()
|
|
| 50 |
model = None
|
| 51 |
|
| 52 |
|
| 53 |
-
def load_model_once(config_path,
|
| 54 |
"""Load model once at startup"""
|
| 55 |
global model
|
| 56 |
if model is None:
|
|
@@ -62,19 +58,12 @@ def load_model_once(config_path, checkpoint_path, device='cpu'):
|
|
| 62 |
|
| 63 |
args = EasyDict(config)
|
| 64 |
args.device = device
|
| 65 |
-
args.checkpoint_path = checkpoint_path
|
| 66 |
|
| 67 |
model = build_model(args)
|
| 68 |
model.to(device)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
filename="ckpt/ryb_mevis_swinb.pth",
|
| 73 |
-
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
|
| 74 |
-
repo_type="model"
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
| 78 |
state_dict = checkpoint["model_state_dict"]
|
| 79 |
model.load_state_dict(state_dict, strict=False)
|
| 80 |
model.eval()
|
|
@@ -118,13 +107,12 @@ def vis_add_mask(img, mask, color, edge_width=3):
|
|
| 118 |
return origin_img
|
| 119 |
|
| 120 |
|
| 121 |
-
def run_video_inference(input_video, text_prompt, tracking_alpha=0.1,
|
| 122 |
"""Main inference function for Gradio"""
|
| 123 |
global model
|
| 124 |
model.tracking_alpha = tracking_alpha
|
| 125 |
|
| 126 |
# Set default values for other parameters
|
| 127 |
-
frame_step = 1
|
| 128 |
show_box = True
|
| 129 |
mask_edge_width = 6
|
| 130 |
|
|
@@ -137,17 +125,16 @@ def run_video_inference(input_video, text_prompt, tracking_alpha=0.1, target_fps
|
|
| 137 |
# Process text prompt
|
| 138 |
exp = " ".join(text_prompt.lower().split())
|
| 139 |
|
| 140 |
-
# Read video
|
| 141 |
-
video_frames, _, info = read_video(input_video, end_pts=
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
frames = []
|
| 146 |
-
for i in range(0, len(video_frames),
|
| 147 |
source_frame = Func.to_pil_image(video_frames[i].permute(2, 0, 1))
|
| 148 |
frames.append(source_frame)
|
| 149 |
|
| 150 |
-
info['video_fps'] = target_fps
|
| 151 |
video_len = len(frames)
|
| 152 |
if video_len == 0:
|
| 153 |
return None, "No frames found in the video."
|
|
@@ -161,92 +148,60 @@ def run_video_inference(input_video, text_prompt, tracking_alpha=0.1, target_fps
|
|
| 161 |
|
| 162 |
device = next(model.parameters()).device
|
| 163 |
imgs = torch.stack(imgs, dim=0).to(device)
|
| 164 |
-
samples = nested_tensor_from_videos_list(imgs[None], size_divisibility=
|
| 165 |
img_h, img_w = imgs.shape[-2:]
|
| 166 |
size = torch.as_tensor([int(img_h), int(img_w)]).to(device)
|
| 167 |
target = {"size": size}
|
| 168 |
|
| 169 |
start_infer = time.time()
|
|
|
|
| 170 |
with torch.no_grad():
|
| 171 |
with autocast(True):
|
| 172 |
outputs = model(samples, [exp], [target])
|
| 173 |
end_infer = time.time()
|
| 174 |
|
| 175 |
pred_logits = outputs["pred_logits"][0] # [t, q, k]
|
| 176 |
-
pred_masks = outputs["pred_masks"][0]
|
| 177 |
-
pred_boxes = outputs["pred_boxes"][0]
|
| 178 |
|
| 179 |
# Select the query index according to pred_logits
|
| 180 |
-
pred_scores = pred_logits.sigmoid()
|
| 181 |
-
pred_scores = pred_scores.mean(0)
|
| 182 |
-
max_scores, _ = pred_scores.max(-1)
|
| 183 |
-
_, max_ind = max_scores.max(-1)
|
| 184 |
max_inds = max_ind.repeat(video_len)
|
| 185 |
pred_masks = pred_masks[range(video_len), max_inds, ...] # [t, h, w]
|
| 186 |
pred_masks = pred_masks.unsqueeze(0)
|
| 187 |
pred_boxes = pred_boxes[range(video_len), max_inds].cpu().numpy() # [t, 4]
|
| 188 |
|
| 189 |
-
# Unpad and resize
|
| 190 |
pred_masks = pred_masks[:, :, :img_h, :img_w].cpu()
|
| 191 |
pred_masks = F.interpolate(pred_masks, size=(origin_h, origin_w), mode='bilinear', align_corners=False)
|
| 192 |
pred_masks = (pred_masks.sigmoid() > 0.5).squeeze(0).cpu().numpy()
|
| 193 |
|
| 194 |
-
# Visualization
|
| 195 |
-
color =
|
| 196 |
-
color = (np.array(matplotlib.colors.hex2color(color)) * 255).astype('uint8')
|
| 197 |
|
| 198 |
-
# ---- Save result video (with per-frame sanitization) ----
|
| 199 |
start_save = time.time()
|
| 200 |
save_imgs = []
|
| 201 |
-
for t,
|
| 202 |
-
#
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
| 206 |
-
draw = ImageDraw.Draw(pil_img)
|
| 207 |
draw_boxes = pred_boxes[t][None]
|
| 208 |
draw_boxes = rescale_bboxes(draw_boxes, (origin_w, origin_h)).tolist()
|
|
|
|
|
|
|
| 209 |
if show_box:
|
| 210 |
xmin, ymin, xmax, ymax = draw_boxes[0]
|
| 211 |
draw.rectangle(((xmin, ymin), (xmax, ymax)), outline=tuple(color), width=5)
|
| 212 |
|
| 213 |
-
|
| 214 |
-
arr = np.asarray(pil_img)
|
| 215 |
-
if arr.ndim == 2: # gray -> 3ch
|
| 216 |
-
arr = np.stack([arr] * 3, axis=-1)
|
| 217 |
-
elif arr.ndim == 3 and arr.shape[2] == 4: # RGBA -> RGB
|
| 218 |
-
arr = arr[..., :3]
|
| 219 |
-
elif arr.ndim != 3:
|
| 220 |
-
arr = np.asarray(Image.fromarray(arr).convert("RGB"))
|
| 221 |
-
|
| 222 |
-
if arr.dtype != np.uint8:
|
| 223 |
-
arr = arr.astype(np.uint8)
|
| 224 |
|
| 225 |
-
|
| 226 |
-
if (h % 2) or (w % 2): # x264 prefers even dims
|
| 227 |
-
arr = arr[: h - (h % 2), : w - (w % 2), :]
|
| 228 |
-
|
| 229 |
-
arr = np.ascontiguousarray(arr)
|
| 230 |
-
assert arr.ndim == 3 and arr.shape[2] == 3, f"Bad frame at t={t}, shape={arr.shape}, dtype={arr.dtype}"
|
| 231 |
-
|
| 232 |
-
save_imgs.append(arr)
|
| 233 |
-
|
| 234 |
-
# Write once (more robust than append_data)
|
| 235 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
writer = imageio.get_writer(
|
| 239 |
-
tmp_file.name,
|
| 240 |
-
format='FFMPEG',
|
| 241 |
-
mode='I',
|
| 242 |
-
fps=fps,
|
| 243 |
-
codec='libx264',
|
| 244 |
-
output_params=['-pix_fmt', 'yuv420p'],
|
| 245 |
-
macro_block_size=None,
|
| 246 |
-
)
|
| 247 |
-
for arr in save_imgs:
|
| 248 |
-
writer.append_data(arr)
|
| 249 |
-
writer.close()
|
| 250 |
result_video_path = tmp_file.name
|
| 251 |
|
| 252 |
end_save = time.time()
|
|
@@ -257,24 +212,19 @@ def run_video_inference(input_video, text_prompt, tracking_alpha=0.1, target_fps
|
|
| 257 |
)
|
| 258 |
return result_video_path, status
|
| 259 |
|
| 260 |
-
# except Exception as e:
|
| 261 |
-
# return None, f"❌ Error during inference: {str(e)}"
|
| 262 |
-
|
| 263 |
|
| 264 |
def main():
|
| 265 |
# Configuration
|
| 266 |
config_path = "configs/ytvos_swinb.yaml" # Update this path
|
| 267 |
-
|
| 268 |
-
# device = "
|
| 269 |
-
device = "cpu"
|
| 270 |
|
| 271 |
# Load model at startup
|
| 272 |
print("Loading model...")
|
| 273 |
-
load_model_once(config_path,
|
| 274 |
print(f"Model loaded on device: {device}")
|
| 275 |
|
| 276 |
# Create Gradio interface
|
| 277 |
-
# with gr.Blocks(title="ReferDINO") as demo:
|
| 278 |
with gr.Blocks(
|
| 279 |
title="ReferDINO",
|
| 280 |
css="""
|
|
@@ -291,7 +241,7 @@ def main():
|
|
| 291 |
<h3>Referring Video Object Segmentation with
|
| 292 |
<a href="https://github.com/iSEE-Laboratory/ReferDINO">ReferDINO</a>
|
| 293 |
</h3>
|
| 294 |
-
<h3>
|
| 295 |
""",
|
| 296 |
elem_id="hero",
|
| 297 |
)
|
|
@@ -323,15 +273,16 @@ def main():
|
|
| 323 |
maximum=1.0,
|
| 324 |
value=0.1,
|
| 325 |
step=0.05,
|
| 326 |
-
info="
|
| 327 |
)
|
|
|
|
| 328 |
target_fps = gr.Slider(
|
| 329 |
-
label="
|
| 330 |
minimum=1,
|
| 331 |
-
maximum=
|
| 332 |
value=10,
|
| 333 |
step=1,
|
| 334 |
-
info="
|
| 335 |
)
|
| 336 |
|
| 337 |
with gr.Column(scale=1):
|
|
@@ -349,14 +300,14 @@ def main():
|
|
| 349 |
# Examples
|
| 350 |
gr.Examples(
|
| 351 |
examples=[
|
| 352 |
-
["
|
| 353 |
-
["
|
| 354 |
],
|
| 355 |
inputs=[input_video, text_prompt, tracking_alpha, target_fps],
|
| 356 |
outputs=[output_video],
|
| 357 |
fn=run_video_inference,
|
| 358 |
cache_examples=False,
|
| 359 |
-
label="Try these examples:"
|
| 360 |
)
|
| 361 |
|
| 362 |
# Event handlers
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
so_path = "models/GroundingDINO/ops/MultiScaleDeformableAttention.cpython-39-x86_64-linux-gnu.so"
|
| 6 |
+
if not os.path.exists(so_path):
|
| 7 |
+
os.system("python models/GroundingDINO/ops/setup.py build_ext develop --user")
|
| 8 |
+
|
| 9 |
import torchvision.transforms as T
|
| 10 |
from models import build_model
|
|
|
|
| 11 |
import torch
|
| 12 |
import misc as utils
|
| 13 |
import numpy as np
|
| 14 |
import torch.nn.functional as F
|
|
|
|
| 15 |
from torchvision.io import read_video
|
| 16 |
import torchvision.transforms.functional as Func
|
| 17 |
from ruamel.yaml import YAML
|
| 18 |
from easydict import EasyDict
|
| 19 |
from misc import nested_tensor_from_videos_list
|
| 20 |
from torch.cuda.amp import autocast
|
| 21 |
+
from PIL import Image, ImageDraw
|
|
|
|
| 22 |
import imageio.v3 as iio
|
|
|
|
| 23 |
import cv2
|
|
|
|
| 24 |
import tempfile
|
| 25 |
import argparse
|
| 26 |
import time
|
| 27 |
from huggingface_hub import hf_hub_download
|
| 28 |
|
|
|
|
| 29 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 30 |
|
| 31 |
+
DURATION = 6
|
| 32 |
+
CHECKPOINT = "ryb_mevis_swinb.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Transform for video frames
|
| 35 |
transform = T.Compose([
|
|
|
|
| 46 |
model = None
|
| 47 |
|
| 48 |
|
| 49 |
+
def load_model_once(config_path, device='cpu'):
|
| 50 |
"""Load model once at startup"""
|
| 51 |
global model
|
| 52 |
if model is None:
|
|
|
|
| 58 |
|
| 59 |
args = EasyDict(config)
|
| 60 |
args.device = device
|
|
|
|
| 61 |
|
| 62 |
model = build_model(args)
|
| 63 |
model.to(device)
|
| 64 |
+
cache_file = hf_hub_download(repo_id="liangtm/referdino", filename=CHECKPOINT)
|
| 65 |
+
# cache_file = 'ckpt/' + CHECKPOINT
|
| 66 |
+
checkpoint = torch.load(cache_file, map_location='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
state_dict = checkpoint["model_state_dict"]
|
| 68 |
model.load_state_dict(state_dict, strict=False)
|
| 69 |
model.eval()
|
|
|
|
| 107 |
return origin_img
|
| 108 |
|
| 109 |
|
| 110 |
+
def run_video_inference(input_video, text_prompt, tracking_alpha=0.1, fps=15):
|
| 111 |
"""Main inference function for Gradio"""
|
| 112 |
global model
|
| 113 |
model.tracking_alpha = tracking_alpha
|
| 114 |
|
| 115 |
# Set default values for other parameters
|
|
|
|
| 116 |
show_box = True
|
| 117 |
mask_edge_width = 6
|
| 118 |
|
|
|
|
| 125 |
# Process text prompt
|
| 126 |
exp = " ".join(text_prompt.lower().split())
|
| 127 |
|
| 128 |
+
# Read video
|
| 129 |
+
video_frames, _, info = read_video(input_video, end_pts=DURATION, pts_unit='sec') # (T, H, W, C)
|
| 130 |
+
|
| 131 |
+
frame_step = max(round(info['video_fps'] / fps), 1)
|
| 132 |
|
| 133 |
frames = []
|
| 134 |
+
for i in range(0, len(video_frames), frame_step):
|
| 135 |
source_frame = Func.to_pil_image(video_frames[i].permute(2, 0, 1))
|
| 136 |
frames.append(source_frame)
|
| 137 |
|
|
|
|
| 138 |
video_len = len(frames)
|
| 139 |
if video_len == 0:
|
| 140 |
return None, "No frames found in the video."
|
|
|
|
| 148 |
|
| 149 |
device = next(model.parameters()).device
|
| 150 |
imgs = torch.stack(imgs, dim=0).to(device)
|
| 151 |
+
samples = nested_tensor_from_videos_list(imgs[None], size_divisibility=16)
|
| 152 |
img_h, img_w = imgs.shape[-2:]
|
| 153 |
size = torch.as_tensor([int(img_h), int(img_w)]).to(device)
|
| 154 |
target = {"size": size}
|
| 155 |
|
| 156 |
start_infer = time.time()
|
| 157 |
+
# Run inference
|
| 158 |
with torch.no_grad():
|
| 159 |
with autocast(True):
|
| 160 |
outputs = model(samples, [exp], [target])
|
| 161 |
end_infer = time.time()
|
| 162 |
|
| 163 |
pred_logits = outputs["pred_logits"][0] # [t, q, k]
|
| 164 |
+
pred_masks = outputs["pred_masks"][0] # [t, q, h, w]
|
| 165 |
+
pred_boxes = outputs["pred_boxes"][0] # [t, q, 4]
|
| 166 |
|
| 167 |
# Select the query index according to pred_logits
|
| 168 |
+
pred_scores = pred_logits.sigmoid() # [t, q, k]
|
| 169 |
+
pred_scores = pred_scores.mean(0) # [q, K]
|
| 170 |
+
max_scores, _ = pred_scores.max(-1) # [q,]
|
| 171 |
+
_, max_ind = max_scores.max(-1) # [1,]
|
| 172 |
max_inds = max_ind.repeat(video_len)
|
| 173 |
pred_masks = pred_masks[range(video_len), max_inds, ...] # [t, h, w]
|
| 174 |
pred_masks = pred_masks.unsqueeze(0)
|
| 175 |
pred_boxes = pred_boxes[range(video_len), max_inds].cpu().numpy() # [t, 4]
|
| 176 |
|
| 177 |
+
# Unpad and resize
|
| 178 |
pred_masks = pred_masks[:, :, :img_h, :img_w].cpu()
|
| 179 |
pred_masks = F.interpolate(pred_masks, size=(origin_h, origin_w), mode='bilinear', align_corners=False)
|
| 180 |
pred_masks = (pred_masks.sigmoid() > 0.5).squeeze(0).cpu().numpy()
|
| 181 |
|
| 182 |
+
# Visualization
|
| 183 |
+
color = np.array([220, 20, 60], dtype=np.uint8)
|
|
|
|
| 184 |
|
|
|
|
| 185 |
start_save = time.time()
|
| 186 |
save_imgs = []
|
| 187 |
+
for t, img in enumerate(frames):
|
| 188 |
+
# Draw mask
|
| 189 |
+
img = vis_add_mask(img, pred_masks[t], color, mask_edge_width)
|
| 190 |
|
| 191 |
+
draw = ImageDraw.Draw(img)
|
|
|
|
| 192 |
draw_boxes = pred_boxes[t][None]
|
| 193 |
draw_boxes = rescale_bboxes(draw_boxes, (origin_w, origin_h)).tolist()
|
| 194 |
+
|
| 195 |
+
# Draw box if enabled
|
| 196 |
if show_box:
|
| 197 |
xmin, ymin, xmax, ymax = draw_boxes[0]
|
| 198 |
draw.rectangle(((xmin, ymin), (xmax, ymax)), outline=tuple(color), width=5)
|
| 199 |
|
| 200 |
+
save_imgs.append(np.asarray(img).copy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
# Save result video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 204 |
+
iio.imwrite(tmp_file.name, save_imgs, fps=fps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
result_video_path = tmp_file.name
|
| 206 |
|
| 207 |
end_save = time.time()
|
|
|
|
| 212 |
)
|
| 213 |
return result_video_path, status
|
| 214 |
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
def main():
|
| 217 |
# Configuration
|
| 218 |
config_path = "configs/ytvos_swinb.yaml" # Update this path
|
| 219 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 220 |
+
# device = "cpu"
|
|
|
|
| 221 |
|
| 222 |
# Load model at startup
|
| 223 |
print("Loading model...")
|
| 224 |
+
load_model_once(config_path, device)
|
| 225 |
print(f"Model loaded on device: {device}")
|
| 226 |
|
| 227 |
# Create Gradio interface
|
|
|
|
| 228 |
with gr.Blocks(
|
| 229 |
title="ReferDINO",
|
| 230 |
css="""
|
|
|
|
| 241 |
<h3>Referring Video Object Segmentation with
|
| 242 |
<a href="https://github.com/iSEE-Laboratory/ReferDINO">ReferDINO</a>
|
| 243 |
</h3>
|
| 244 |
+
<h3>Note that this demo runs on CPU, so the video will be trimmed to ≤6 seconds.</h3>
|
| 245 |
""",
|
| 246 |
elem_id="hero",
|
| 247 |
)
|
|
|
|
| 273 |
maximum=1.0,
|
| 274 |
value=0.1,
|
| 275 |
step=0.05,
|
| 276 |
+
info="controls the memory updating (lower = longer memory)"
|
| 277 |
)
|
| 278 |
+
|
| 279 |
target_fps = gr.Slider(
|
| 280 |
+
label="FPS",
|
| 281 |
minimum=1,
|
| 282 |
+
maximum=30,
|
| 283 |
value=10,
|
| 284 |
step=1,
|
| 285 |
+
info="controls the FPS (lower = faster processing)"
|
| 286 |
)
|
| 287 |
|
| 288 |
with gr.Column(scale=1):
|
|
|
|
| 300 |
# Examples
|
| 301 |
gr.Examples(
|
| 302 |
examples=[
|
| 303 |
+
["dogs.mp4", "the dog drinking Sprite", 0.1, 10],
|
| 304 |
+
["dogs.mp4", "the dog sleeping", 0.1, 10],
|
| 305 |
],
|
| 306 |
inputs=[input_video, text_prompt, tracking_alpha, target_fps],
|
| 307 |
outputs=[output_video],
|
| 308 |
fn=run_video_inference,
|
| 309 |
cache_examples=False,
|
| 310 |
+
label="📋 Try these examples:"
|
| 311 |
)
|
| 312 |
|
| 313 |
# Event handlers
|