Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import PIL
|
| 5 |
+
|
| 6 |
+
from open_flamingo import create_model_and_transforms
|
| 7 |
+
|
| 8 |
+
model, image_processor, tokenizer = create_model_and_transforms(
|
| 9 |
+
clip_vision_encoder_path="ViT-L-14",
|
| 10 |
+
clip_vision_encoder_pretrained="openai",
|
| 11 |
+
lang_encoder_path="anas-awadalla/mpt-1b-redpajama-200b",
|
| 12 |
+
tokenizer_path="anas-awadalla/mpt-1b-redpajama-200b",
|
| 13 |
+
cross_attn_every_n_layers=1,
|
| 14 |
+
cache_dir="PATH/TO/CACHE/DIR" # Defaults to ~/.cache
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# grab model checkpoint from huggingface hub
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-3B-vitl-mpt1b", "checkpoint.pt")
|
| 22 |
+
model.load_state_dict(torch.load(checkpoint_path), strict=False)
|
| 23 |
+
|
| 24 |
+
from PIL import Image
|
| 25 |
+
import requests
|
| 26 |
+
import torch
|
| 27 |
+
|
| 28 |
+
"""
|
| 29 |
+
Step 1: Load images
|
| 30 |
+
"""
|
| 31 |
+
demo_image_one = Image.open(
|
| 32 |
+
requests.get(
|
| 33 |
+
"http://images.cocodataset.org/val2017/000000039769.jpg", stream=True
|
| 34 |
+
).raw
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
demo_image_two = Image.open(
|
| 38 |
+
requests.get(
|
| 39 |
+
"http://images.cocodataset.org/test-stuff2017/000000028137.jpg",
|
| 40 |
+
stream=True
|
| 41 |
+
).raw
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
query_image = Image.open(
|
| 45 |
+
requests.get(
|
| 46 |
+
"http://images.cocodataset.org/test-stuff2017/000000028352.jpg",
|
| 47 |
+
stream=True
|
| 48 |
+
).raw
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
"""
|
| 53 |
+
Step 2: Preprocessing images
|
| 54 |
+
Details: For OpenFlamingo, we expect the image to be a torch tensor of shape
|
| 55 |
+
batch_size x num_media x num_frames x channels x height x width.
|
| 56 |
+
In this case batch_size = 1, num_media = 3, num_frames = 1,
|
| 57 |
+
channels = 3, height = 224, width = 224.
|
| 58 |
+
Step 3: Preprocessing text
|
| 59 |
+
Details: In the text we expect an <image> special token to indicate where an image is.
|
| 60 |
+
We also expect an <|endofchunk|> special token to indicate the end of the text
|
| 61 |
+
portion associated with an image.
|
| 62 |
+
tokenizer.padding_side = "left" # For generation padding tokens should be on the left
|
| 63 |
+
lang_x = tokenizer(
|
| 64 |
+
["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"],
|
| 65 |
+
return_tensors="pt",
|
| 66 |
+
)
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
"""
|
| 70 |
+
Step 4: Generate text
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
#print("Generated text: ", tokenizer.decode(generated_text[0]))
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def predict_caption(image, prompt):
|
| 83 |
+
assert isinstance(prompt, str)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)]
|
| 87 |
+
vision_x = torch.cat(vision_x, dim=0)
|
| 88 |
+
vision_x = vision_x.unsqueeze(1).unsqueeze(0)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
tokenizer.padding_side = "left" # For generation padding tokens should be on the left
|
| 92 |
+
lang_x = tokenizer(
|
| 93 |
+
["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"],
|
| 94 |
+
return_tensors="pt",
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
tokenizer.padding_side = "left" # For generation padding tokens should be on the left
|
| 98 |
+
lang_x = tokenizer(
|
| 99 |
+
["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"],
|
| 100 |
+
return_tensors="pt",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
caption = tokenizer.decode(generated_text[0])
|
| 104 |
+
|
| 105 |
+
return caption
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
iface = gr.Interface(fn=predict_caption,
|
| 109 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(value=DEFAULT_PROMPT, label="Prompt")],
|
| 110 |
+
examples=examples,
|
| 111 |
+
outputs="text")
|
| 112 |
+
|
| 113 |
+
iface.launch()
|