Spaces:
Runtime error
Runtime error
Upload encoders/timm_mobilenetv3.py
Browse files- encoders/timm_mobilenetv3.py +175 -0
encoders/timm_mobilenetv3.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import timm
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
|
| 5 |
+
from ._base import EncoderMixin
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def _make_divisible(x, divisible_by=8):
|
| 9 |
+
return int(np.ceil(x * 1. / divisible_by) * divisible_by)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MobileNetV3Encoder(nn.Module, EncoderMixin):
|
| 13 |
+
def __init__(self, model_name, width_mult, depth=5, **kwargs):
|
| 14 |
+
super().__init__()
|
| 15 |
+
if "large" not in model_name and "small" not in model_name:
|
| 16 |
+
raise ValueError(
|
| 17 |
+
'MobileNetV3 wrong model name {}'.format(model_name)
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
self._mode = "small" if "small" in model_name else "large"
|
| 21 |
+
self._depth = depth
|
| 22 |
+
self._out_channels = self._get_channels(self._mode, width_mult)
|
| 23 |
+
self._in_channels = 3
|
| 24 |
+
|
| 25 |
+
# minimal models replace hardswish with relu
|
| 26 |
+
self.model = timm.create_model(
|
| 27 |
+
model_name=model_name,
|
| 28 |
+
scriptable=True, # torch.jit scriptable
|
| 29 |
+
exportable=True, # onnx export
|
| 30 |
+
features_only=True,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
def _get_channels(self, mode, width_mult):
|
| 34 |
+
if mode == "small":
|
| 35 |
+
channels = [16, 16, 24, 48, 576]
|
| 36 |
+
else:
|
| 37 |
+
channels = [16, 24, 40, 112, 960]
|
| 38 |
+
channels = [3,] + [_make_divisible(x * width_mult) for x in channels]
|
| 39 |
+
return tuple(channels)
|
| 40 |
+
|
| 41 |
+
def get_stages(self):
|
| 42 |
+
if self._mode == 'small':
|
| 43 |
+
return [
|
| 44 |
+
nn.Identity(),
|
| 45 |
+
nn.Sequential(
|
| 46 |
+
self.model.conv_stem,
|
| 47 |
+
self.model.bn1,
|
| 48 |
+
self.model.act1,
|
| 49 |
+
),
|
| 50 |
+
self.model.blocks[0],
|
| 51 |
+
self.model.blocks[1],
|
| 52 |
+
self.model.blocks[2:4],
|
| 53 |
+
self.model.blocks[4:],
|
| 54 |
+
]
|
| 55 |
+
elif self._mode == 'large':
|
| 56 |
+
return [
|
| 57 |
+
nn.Identity(),
|
| 58 |
+
nn.Sequential(
|
| 59 |
+
self.model.conv_stem,
|
| 60 |
+
self.model.bn1,
|
| 61 |
+
self.model.act1,
|
| 62 |
+
self.model.blocks[0],
|
| 63 |
+
),
|
| 64 |
+
self.model.blocks[1],
|
| 65 |
+
self.model.blocks[2],
|
| 66 |
+
self.model.blocks[3:5],
|
| 67 |
+
self.model.blocks[5:],
|
| 68 |
+
]
|
| 69 |
+
else:
|
| 70 |
+
ValueError('MobileNetV3 mode should be small or large, got {}'.format(self._mode))
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
stages = self.get_stages()
|
| 74 |
+
|
| 75 |
+
features = []
|
| 76 |
+
for i in range(self._depth + 1):
|
| 77 |
+
x = stages[i](x)
|
| 78 |
+
features.append(x)
|
| 79 |
+
|
| 80 |
+
return features
|
| 81 |
+
|
| 82 |
+
def load_state_dict(self, state_dict, **kwargs):
|
| 83 |
+
state_dict.pop('conv_head.weight', None)
|
| 84 |
+
state_dict.pop('conv_head.bias', None)
|
| 85 |
+
state_dict.pop('classifier.weight', None)
|
| 86 |
+
state_dict.pop('classifier.bias', None)
|
| 87 |
+
self.model.load_state_dict(state_dict, **kwargs)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
mobilenetv3_weights = {
|
| 91 |
+
'tf_mobilenetv3_large_075': {
|
| 92 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth'
|
| 93 |
+
},
|
| 94 |
+
'tf_mobilenetv3_large_100': {
|
| 95 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth'
|
| 96 |
+
},
|
| 97 |
+
'tf_mobilenetv3_large_minimal_100': {
|
| 98 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth'
|
| 99 |
+
},
|
| 100 |
+
'tf_mobilenetv3_small_075': {
|
| 101 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth'
|
| 102 |
+
},
|
| 103 |
+
'tf_mobilenetv3_small_100': {
|
| 104 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth'
|
| 105 |
+
},
|
| 106 |
+
'tf_mobilenetv3_small_minimal_100': {
|
| 107 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth'
|
| 108 |
+
},
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
pretrained_settings = {}
|
| 114 |
+
for model_name, sources in mobilenetv3_weights.items():
|
| 115 |
+
pretrained_settings[model_name] = {}
|
| 116 |
+
for source_name, source_url in sources.items():
|
| 117 |
+
pretrained_settings[model_name][source_name] = {
|
| 118 |
+
"url": source_url,
|
| 119 |
+
'input_range': [0, 1],
|
| 120 |
+
'mean': [0.485, 0.456, 0.406],
|
| 121 |
+
'std': [0.229, 0.224, 0.225],
|
| 122 |
+
'input_space': 'RGB',
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
timm_mobilenetv3_encoders = {
|
| 127 |
+
'timm-mobilenetv3_large_075': {
|
| 128 |
+
'encoder': MobileNetV3Encoder,
|
| 129 |
+
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_075'],
|
| 130 |
+
'params': {
|
| 131 |
+
'model_name': 'tf_mobilenetv3_large_075',
|
| 132 |
+
'width_mult': 0.75
|
| 133 |
+
}
|
| 134 |
+
},
|
| 135 |
+
'timm-mobilenetv3_large_100': {
|
| 136 |
+
'encoder': MobileNetV3Encoder,
|
| 137 |
+
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_100'],
|
| 138 |
+
'params': {
|
| 139 |
+
'model_name': 'tf_mobilenetv3_large_100',
|
| 140 |
+
'width_mult': 1.0
|
| 141 |
+
}
|
| 142 |
+
},
|
| 143 |
+
'timm-mobilenetv3_large_minimal_100': {
|
| 144 |
+
'encoder': MobileNetV3Encoder,
|
| 145 |
+
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_minimal_100'],
|
| 146 |
+
'params': {
|
| 147 |
+
'model_name': 'tf_mobilenetv3_large_minimal_100',
|
| 148 |
+
'width_mult': 1.0
|
| 149 |
+
}
|
| 150 |
+
},
|
| 151 |
+
'timm-mobilenetv3_small_075': {
|
| 152 |
+
'encoder': MobileNetV3Encoder,
|
| 153 |
+
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_075'],
|
| 154 |
+
'params': {
|
| 155 |
+
'model_name': 'tf_mobilenetv3_small_075',
|
| 156 |
+
'width_mult': 0.75
|
| 157 |
+
}
|
| 158 |
+
},
|
| 159 |
+
'timm-mobilenetv3_small_100': {
|
| 160 |
+
'encoder': MobileNetV3Encoder,
|
| 161 |
+
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_100'],
|
| 162 |
+
'params': {
|
| 163 |
+
'model_name': 'tf_mobilenetv3_small_100',
|
| 164 |
+
'width_mult': 1.0
|
| 165 |
+
}
|
| 166 |
+
},
|
| 167 |
+
'timm-mobilenetv3_small_minimal_100': {
|
| 168 |
+
'encoder': MobileNetV3Encoder,
|
| 169 |
+
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_minimal_100'],
|
| 170 |
+
'params': {
|
| 171 |
+
'model_name': 'tf_mobilenetv3_small_minimal_100',
|
| 172 |
+
'width_mult': 1.0
|
| 173 |
+
}
|
| 174 |
+
},
|
| 175 |
+
}
|