Spaces:
Runtime error
Runtime error
Upload backbone.py
Browse files- backbone.py +143 -0
backbone.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import timm
|
| 4 |
+
|
| 5 |
+
from hybridnets.model import BiFPN, Regressor, Classifier, BiFPNDecoder
|
| 6 |
+
from utils.utils import Anchors
|
| 7 |
+
from hybridnets.model import SegmentationHead
|
| 8 |
+
|
| 9 |
+
from encoders import get_encoder
|
| 10 |
+
|
| 11 |
+
class HybridNetsBackbone(nn.Module):
|
| 12 |
+
def __init__(self, num_classes=80, compound_coef=0, seg_classes=1, backbone_name=None, **kwargs):
|
| 13 |
+
super(HybridNetsBackbone, self).__init__()
|
| 14 |
+
self.compound_coef = compound_coef
|
| 15 |
+
|
| 16 |
+
self.seg_classes = seg_classes
|
| 17 |
+
|
| 18 |
+
self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6, 7]
|
| 19 |
+
self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384, 384]
|
| 20 |
+
self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8, 8]
|
| 21 |
+
self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
|
| 22 |
+
self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5, 5]
|
| 23 |
+
self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6]
|
| 24 |
+
self.anchor_scale = [1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,]
|
| 25 |
+
self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
|
| 26 |
+
self.num_scales = len(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]))
|
| 27 |
+
conv_channel_coef = {
|
| 28 |
+
# the channels of P3/P4/P5.
|
| 29 |
+
0: [40, 112, 320],
|
| 30 |
+
1: [40, 112, 320],
|
| 31 |
+
2: [48, 120, 352],
|
| 32 |
+
3: [48, 136, 384],
|
| 33 |
+
4: [56, 160, 448],
|
| 34 |
+
5: [64, 176, 512],
|
| 35 |
+
6: [72, 200, 576],
|
| 36 |
+
7: [72, 200, 576],
|
| 37 |
+
8: [80, 224, 640],
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
num_anchors = len(self.aspect_ratios) * self.num_scales
|
| 41 |
+
|
| 42 |
+
self.bifpn = nn.Sequential(
|
| 43 |
+
*[BiFPN(self.fpn_num_filters[self.compound_coef],
|
| 44 |
+
conv_channel_coef[compound_coef],
|
| 45 |
+
True if _ == 0 else False,
|
| 46 |
+
attention=True if compound_coef < 6 else False,
|
| 47 |
+
use_p8=compound_coef > 7)
|
| 48 |
+
for _ in range(self.fpn_cell_repeats[compound_coef])])
|
| 49 |
+
|
| 50 |
+
self.num_classes = num_classes
|
| 51 |
+
self.regressor = Regressor(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors,
|
| 52 |
+
num_layers=self.box_class_repeats[self.compound_coef],
|
| 53 |
+
pyramid_levels=self.pyramid_levels[self.compound_coef])
|
| 54 |
+
|
| 55 |
+
'''Modified by Dat Vu'''
|
| 56 |
+
# self.decoder = DecoderModule()
|
| 57 |
+
self.bifpndecoder = BiFPNDecoder(pyramid_channels=self.fpn_num_filters[self.compound_coef])
|
| 58 |
+
|
| 59 |
+
self.segmentation_head = SegmentationHead(
|
| 60 |
+
in_channels=64,
|
| 61 |
+
out_channels=self.seg_classes+1 if self.seg_classes > 1 else self.seg_classes,
|
| 62 |
+
activation='softmax2d' if self.seg_classes > 1 else 'sigmoid',
|
| 63 |
+
kernel_size=1,
|
| 64 |
+
upsampling=4,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
self.classifier = Classifier(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors,
|
| 68 |
+
num_classes=num_classes,
|
| 69 |
+
num_layers=self.box_class_repeats[self.compound_coef],
|
| 70 |
+
pyramid_levels=self.pyramid_levels[self.compound_coef])
|
| 71 |
+
|
| 72 |
+
self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef],
|
| 73 |
+
pyramid_levels=(torch.arange(self.pyramid_levels[self.compound_coef]) + 3).tolist(),
|
| 74 |
+
**kwargs)
|
| 75 |
+
|
| 76 |
+
if backbone_name:
|
| 77 |
+
# Use timm to create another backbone that you prefer
|
| 78 |
+
# https://github.com/rwightman/pytorch-image-models
|
| 79 |
+
self.encoder = timm.create_model(backbone_name, pretrained=True, features_only=True, out_indices=(2,3,4)) # P3,P4,P5
|
| 80 |
+
else:
|
| 81 |
+
# EfficientNet_Pytorch
|
| 82 |
+
self.encoder = get_encoder(
|
| 83 |
+
'efficientnet-b' + str(self.backbone_compound_coef[compound_coef]),
|
| 84 |
+
in_channels=3,
|
| 85 |
+
depth=5,
|
| 86 |
+
weights='imagenet',
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
self.initialize_decoder(self.bifpndecoder)
|
| 90 |
+
self.initialize_head(self.segmentation_head)
|
| 91 |
+
self.initialize_decoder(self.bifpn)
|
| 92 |
+
|
| 93 |
+
def freeze_bn(self):
|
| 94 |
+
for m in self.modules():
|
| 95 |
+
if isinstance(m, nn.BatchNorm2d):
|
| 96 |
+
m.eval()
|
| 97 |
+
|
| 98 |
+
def forward(self, inputs):
|
| 99 |
+
max_size = inputs.shape[-1]
|
| 100 |
+
|
| 101 |
+
# p1, p2, p3, p4, p5 = self.backbone_net(inputs)
|
| 102 |
+
p2, p3, p4, p5 = self.encoder(inputs)[-4:] # self.backbone_net(inputs)
|
| 103 |
+
|
| 104 |
+
features = (p3, p4, p5)
|
| 105 |
+
|
| 106 |
+
features = self.bifpn(features)
|
| 107 |
+
|
| 108 |
+
p3,p4,p5,p6,p7 = features
|
| 109 |
+
|
| 110 |
+
outputs = self.bifpndecoder((p2,p3,p4,p5,p6,p7))
|
| 111 |
+
|
| 112 |
+
segmentation = self.segmentation_head(outputs)
|
| 113 |
+
|
| 114 |
+
regression = self.regressor(features)
|
| 115 |
+
classification = self.classifier(features)
|
| 116 |
+
anchors = self.anchors(inputs, inputs.dtype)
|
| 117 |
+
|
| 118 |
+
return features, regression, classification, anchors, segmentation
|
| 119 |
+
|
| 120 |
+
def initialize_decoder(self, module):
|
| 121 |
+
for m in module.modules():
|
| 122 |
+
|
| 123 |
+
if isinstance(m, nn.Conv2d):
|
| 124 |
+
nn.init.kaiming_uniform_(m.weight, mode="fan_in", nonlinearity="relu")
|
| 125 |
+
if m.bias is not None:
|
| 126 |
+
nn.init.constant_(m.bias, 0)
|
| 127 |
+
|
| 128 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 129 |
+
nn.init.constant_(m.weight, 1)
|
| 130 |
+
nn.init.constant_(m.bias, 0)
|
| 131 |
+
|
| 132 |
+
elif isinstance(m, nn.Linear):
|
| 133 |
+
nn.init.xavier_uniform_(m.weight)
|
| 134 |
+
if m.bias is not None:
|
| 135 |
+
nn.init.constant_(m.bias, 0)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def initialize_head(self, module):
|
| 139 |
+
for m in module.modules():
|
| 140 |
+
if isinstance(m, (nn.Linear, nn.Conv2d)):
|
| 141 |
+
nn.init.xavier_uniform_(m.weight)
|
| 142 |
+
if m.bias is not None:
|
| 143 |
+
nn.init.constant_(m.bias, 0)
|