Spaces:
Runtime error
Runtime error
Upload encoders/__init__.py
Browse files- encoders/__init__.py +105 -0
encoders/__init__.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import torch.utils.model_zoo as model_zoo
|
| 3 |
+
|
| 4 |
+
from .resnet import resnet_encoders
|
| 5 |
+
from .dpn import dpn_encoders
|
| 6 |
+
from .vgg import vgg_encoders
|
| 7 |
+
from .senet import senet_encoders
|
| 8 |
+
from .densenet import densenet_encoders
|
| 9 |
+
from .inceptionresnetv2 import inceptionresnetv2_encoders
|
| 10 |
+
from .inceptionv4 import inceptionv4_encoders
|
| 11 |
+
from .efficientnet import efficient_net_encoders
|
| 12 |
+
from .mobilenet import mobilenet_encoders
|
| 13 |
+
from .xception import xception_encoders
|
| 14 |
+
from .timm_efficientnet import timm_efficientnet_encoders
|
| 15 |
+
from .timm_resnest import timm_resnest_encoders
|
| 16 |
+
from .timm_res2net import timm_res2net_encoders
|
| 17 |
+
from .timm_regnet import timm_regnet_encoders
|
| 18 |
+
from .timm_sknet import timm_sknet_encoders
|
| 19 |
+
from .timm_mobilenetv3 import timm_mobilenetv3_encoders
|
| 20 |
+
from .timm_gernet import timm_gernet_encoders
|
| 21 |
+
|
| 22 |
+
from .timm_universal import TimmUniversalEncoder
|
| 23 |
+
|
| 24 |
+
from ._preprocessing import preprocess_input
|
| 25 |
+
|
| 26 |
+
encoders = {}
|
| 27 |
+
encoders.update(resnet_encoders)
|
| 28 |
+
encoders.update(dpn_encoders)
|
| 29 |
+
encoders.update(vgg_encoders)
|
| 30 |
+
encoders.update(senet_encoders)
|
| 31 |
+
encoders.update(densenet_encoders)
|
| 32 |
+
encoders.update(inceptionresnetv2_encoders)
|
| 33 |
+
encoders.update(inceptionv4_encoders)
|
| 34 |
+
encoders.update(efficient_net_encoders)
|
| 35 |
+
encoders.update(mobilenet_encoders)
|
| 36 |
+
encoders.update(xception_encoders)
|
| 37 |
+
encoders.update(timm_efficientnet_encoders)
|
| 38 |
+
encoders.update(timm_resnest_encoders)
|
| 39 |
+
encoders.update(timm_res2net_encoders)
|
| 40 |
+
encoders.update(timm_regnet_encoders)
|
| 41 |
+
encoders.update(timm_sknet_encoders)
|
| 42 |
+
encoders.update(timm_mobilenetv3_encoders)
|
| 43 |
+
encoders.update(timm_gernet_encoders)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_encoder(name, in_channels=3, depth=5, weights=None, output_stride=32, **kwargs):
|
| 47 |
+
|
| 48 |
+
if name.startswith("tu-"):
|
| 49 |
+
name = name[3:]
|
| 50 |
+
encoder = TimmUniversalEncoder(
|
| 51 |
+
name=name,
|
| 52 |
+
in_channels=in_channels,
|
| 53 |
+
depth=depth,
|
| 54 |
+
output_stride=output_stride,
|
| 55 |
+
pretrained=weights is not None,
|
| 56 |
+
**kwargs
|
| 57 |
+
)
|
| 58 |
+
return encoder
|
| 59 |
+
|
| 60 |
+
try:
|
| 61 |
+
Encoder = encoders[name]["encoder"]
|
| 62 |
+
except KeyError:
|
| 63 |
+
raise KeyError("Wrong encoder name `{}`, supported encoders: {}".format(name, list(encoders.keys())))
|
| 64 |
+
|
| 65 |
+
params = encoders[name]["params"]
|
| 66 |
+
params.update(depth=depth)
|
| 67 |
+
encoder = Encoder(**params)
|
| 68 |
+
|
| 69 |
+
if weights is not None:
|
| 70 |
+
try:
|
| 71 |
+
settings = encoders[name]["pretrained_settings"][weights]
|
| 72 |
+
except KeyError:
|
| 73 |
+
raise KeyError("Wrong pretrained weights `{}` for encoder `{}`. Available options are: {}".format(
|
| 74 |
+
weights, name, list(encoders[name]["pretrained_settings"].keys()),
|
| 75 |
+
))
|
| 76 |
+
encoder.load_state_dict(model_zoo.load_url(settings["url"]))
|
| 77 |
+
|
| 78 |
+
encoder.set_in_channels(in_channels, pretrained=weights is not None)
|
| 79 |
+
if output_stride != 32:
|
| 80 |
+
encoder.make_dilated(output_stride)
|
| 81 |
+
|
| 82 |
+
return encoder
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def get_encoder_names():
|
| 86 |
+
return list(encoders.keys())
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def get_preprocessing_params(encoder_name, pretrained="imagenet"):
|
| 90 |
+
settings = encoders[encoder_name]["pretrained_settings"]
|
| 91 |
+
|
| 92 |
+
if pretrained not in settings.keys():
|
| 93 |
+
raise ValueError("Available pretrained options {}".format(settings.keys()))
|
| 94 |
+
|
| 95 |
+
formatted_settings = {}
|
| 96 |
+
formatted_settings["input_space"] = settings[pretrained].get("input_space")
|
| 97 |
+
formatted_settings["input_range"] = settings[pretrained].get("input_range")
|
| 98 |
+
formatted_settings["mean"] = settings[pretrained].get("mean")
|
| 99 |
+
formatted_settings["std"] = settings[pretrained].get("std")
|
| 100 |
+
return formatted_settings
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def get_preprocessing_fn(encoder_name, pretrained="imagenet"):
|
| 104 |
+
params = get_preprocessing_params(encoder_name, pretrained=pretrained)
|
| 105 |
+
return functools.partial(preprocess_input, **params)
|