Spaces:
Runtime error
Runtime error
Upload encoders/timm_efficientnet.py
Browse files- encoders/timm_efficientnet.py +382 -0
encoders/timm_efficientnet.py
ADDED
|
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
from timm.models.efficientnet import EfficientNet
|
| 7 |
+
from timm.models.efficientnet import decode_arch_def, round_channels, default_cfgs
|
| 8 |
+
from timm.models.layers.activations import Swish
|
| 9 |
+
|
| 10 |
+
from ._base import EncoderMixin
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_efficientnet_kwargs(channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2):
|
| 14 |
+
"""Creates an EfficientNet model.
|
| 15 |
+
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
|
| 16 |
+
Paper: https://arxiv.org/abs/1905.11946
|
| 17 |
+
EfficientNet params
|
| 18 |
+
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate)
|
| 19 |
+
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
|
| 20 |
+
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
|
| 21 |
+
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
|
| 22 |
+
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
|
| 23 |
+
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
|
| 24 |
+
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
|
| 25 |
+
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
|
| 26 |
+
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
|
| 27 |
+
'efficientnet-b8': (2.2, 3.6, 672, 0.5),
|
| 28 |
+
'efficientnet-l2': (4.3, 5.3, 800, 0.5),
|
| 29 |
+
Args:
|
| 30 |
+
channel_multiplier: multiplier to number of channels per layer
|
| 31 |
+
depth_multiplier: multiplier to number of repeats per stage
|
| 32 |
+
"""
|
| 33 |
+
arch_def = [
|
| 34 |
+
['ds_r1_k3_s1_e1_c16_se0.25'],
|
| 35 |
+
['ir_r2_k3_s2_e6_c24_se0.25'],
|
| 36 |
+
['ir_r2_k5_s2_e6_c40_se0.25'],
|
| 37 |
+
['ir_r3_k3_s2_e6_c80_se0.25'],
|
| 38 |
+
['ir_r3_k5_s1_e6_c112_se0.25'],
|
| 39 |
+
['ir_r4_k5_s2_e6_c192_se0.25'],
|
| 40 |
+
['ir_r1_k3_s1_e6_c320_se0.25'],
|
| 41 |
+
]
|
| 42 |
+
model_kwargs = dict(
|
| 43 |
+
block_args=decode_arch_def(arch_def, depth_multiplier),
|
| 44 |
+
num_features=round_channels(1280, channel_multiplier, 8, None),
|
| 45 |
+
stem_size=32,
|
| 46 |
+
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
| 47 |
+
act_layer=Swish,
|
| 48 |
+
drop_rate=drop_rate,
|
| 49 |
+
drop_path_rate=0.2,
|
| 50 |
+
)
|
| 51 |
+
return model_kwargs
|
| 52 |
+
|
| 53 |
+
def gen_efficientnet_lite_kwargs(channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2):
|
| 54 |
+
"""Creates an EfficientNet-Lite model.
|
| 55 |
+
|
| 56 |
+
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
|
| 57 |
+
Paper: https://arxiv.org/abs/1905.11946
|
| 58 |
+
|
| 59 |
+
EfficientNet params
|
| 60 |
+
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate)
|
| 61 |
+
'efficientnet-lite0': (1.0, 1.0, 224, 0.2),
|
| 62 |
+
'efficientnet-lite1': (1.0, 1.1, 240, 0.2),
|
| 63 |
+
'efficientnet-lite2': (1.1, 1.2, 260, 0.3),
|
| 64 |
+
'efficientnet-lite3': (1.2, 1.4, 280, 0.3),
|
| 65 |
+
'efficientnet-lite4': (1.4, 1.8, 300, 0.3),
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
channel_multiplier: multiplier to number of channels per layer
|
| 69 |
+
depth_multiplier: multiplier to number of repeats per stage
|
| 70 |
+
"""
|
| 71 |
+
arch_def = [
|
| 72 |
+
['ds_r1_k3_s1_e1_c16'],
|
| 73 |
+
['ir_r2_k3_s2_e6_c24'],
|
| 74 |
+
['ir_r2_k5_s2_e6_c40'],
|
| 75 |
+
['ir_r3_k3_s2_e6_c80'],
|
| 76 |
+
['ir_r3_k5_s1_e6_c112'],
|
| 77 |
+
['ir_r4_k5_s2_e6_c192'],
|
| 78 |
+
['ir_r1_k3_s1_e6_c320'],
|
| 79 |
+
]
|
| 80 |
+
model_kwargs = dict(
|
| 81 |
+
block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True),
|
| 82 |
+
num_features=1280,
|
| 83 |
+
stem_size=32,
|
| 84 |
+
fix_stem=True,
|
| 85 |
+
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
| 86 |
+
act_layer=nn.ReLU6,
|
| 87 |
+
drop_rate=drop_rate,
|
| 88 |
+
drop_path_rate=0.2,
|
| 89 |
+
)
|
| 90 |
+
return model_kwargs
|
| 91 |
+
|
| 92 |
+
class EfficientNetBaseEncoder(EfficientNet, EncoderMixin):
|
| 93 |
+
|
| 94 |
+
def __init__(self, stage_idxs, out_channels, depth=5, **kwargs):
|
| 95 |
+
super().__init__(**kwargs)
|
| 96 |
+
|
| 97 |
+
self._stage_idxs = stage_idxs
|
| 98 |
+
self._out_channels = out_channels
|
| 99 |
+
self._depth = depth
|
| 100 |
+
self._in_channels = 3
|
| 101 |
+
|
| 102 |
+
del self.classifier
|
| 103 |
+
|
| 104 |
+
def get_stages(self):
|
| 105 |
+
return [
|
| 106 |
+
nn.Identity(),
|
| 107 |
+
nn.Sequential(self.conv_stem, self.bn1, self.act1),
|
| 108 |
+
self.blocks[:self._stage_idxs[0]],
|
| 109 |
+
self.blocks[self._stage_idxs[0]:self._stage_idxs[1]],
|
| 110 |
+
self.blocks[self._stage_idxs[1]:self._stage_idxs[2]],
|
| 111 |
+
self.blocks[self._stage_idxs[2]:],
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
stages = self.get_stages()
|
| 116 |
+
|
| 117 |
+
features = []
|
| 118 |
+
for i in range(self._depth + 1):
|
| 119 |
+
x = stages[i](x)
|
| 120 |
+
features.append(x)
|
| 121 |
+
|
| 122 |
+
return features
|
| 123 |
+
|
| 124 |
+
def load_state_dict(self, state_dict, **kwargs):
|
| 125 |
+
state_dict.pop("classifier.bias", None)
|
| 126 |
+
state_dict.pop("classifier.weight", None)
|
| 127 |
+
super().load_state_dict(state_dict, **kwargs)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class EfficientNetEncoder(EfficientNetBaseEncoder):
|
| 131 |
+
|
| 132 |
+
def __init__(self, stage_idxs, out_channels, depth=5, channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2):
|
| 133 |
+
kwargs = get_efficientnet_kwargs(channel_multiplier, depth_multiplier, drop_rate)
|
| 134 |
+
super().__init__(stage_idxs, out_channels, depth, **kwargs)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class EfficientNetLiteEncoder(EfficientNetBaseEncoder):
|
| 138 |
+
|
| 139 |
+
def __init__(self, stage_idxs, out_channels, depth=5, channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2):
|
| 140 |
+
kwargs = gen_efficientnet_lite_kwargs(channel_multiplier, depth_multiplier, drop_rate)
|
| 141 |
+
super().__init__(stage_idxs, out_channels, depth, **kwargs)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def prepare_settings(settings):
|
| 145 |
+
return {
|
| 146 |
+
"mean": settings["mean"],
|
| 147 |
+
"std": settings["std"],
|
| 148 |
+
"url": settings["url"],
|
| 149 |
+
"input_range": (0, 1),
|
| 150 |
+
"input_space": "RGB",
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
timm_efficientnet_encoders = {
|
| 155 |
+
|
| 156 |
+
"timm-efficientnet-b0": {
|
| 157 |
+
"encoder": EfficientNetEncoder,
|
| 158 |
+
"pretrained_settings": {
|
| 159 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b0"]),
|
| 160 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b0_ap"]),
|
| 161 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b0_ns"]),
|
| 162 |
+
},
|
| 163 |
+
"params": {
|
| 164 |
+
"out_channels": (3, 32, 24, 40, 112, 320),
|
| 165 |
+
"stage_idxs": (2, 3, 5),
|
| 166 |
+
"channel_multiplier": 1.0,
|
| 167 |
+
"depth_multiplier": 1.0,
|
| 168 |
+
"drop_rate": 0.2,
|
| 169 |
+
},
|
| 170 |
+
},
|
| 171 |
+
|
| 172 |
+
"timm-efficientnet-b1": {
|
| 173 |
+
"encoder": EfficientNetEncoder,
|
| 174 |
+
"pretrained_settings": {
|
| 175 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b1"]),
|
| 176 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b1_ap"]),
|
| 177 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b1_ns"]),
|
| 178 |
+
},
|
| 179 |
+
"params": {
|
| 180 |
+
"out_channels": (3, 32, 24, 40, 112, 320),
|
| 181 |
+
"stage_idxs": (2, 3, 5),
|
| 182 |
+
"channel_multiplier": 1.0,
|
| 183 |
+
"depth_multiplier": 1.1,
|
| 184 |
+
"drop_rate": 0.2,
|
| 185 |
+
},
|
| 186 |
+
},
|
| 187 |
+
|
| 188 |
+
"timm-efficientnet-b2": {
|
| 189 |
+
"encoder": EfficientNetEncoder,
|
| 190 |
+
"pretrained_settings": {
|
| 191 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b2"]),
|
| 192 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b2_ap"]),
|
| 193 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b2_ns"]),
|
| 194 |
+
},
|
| 195 |
+
"params": {
|
| 196 |
+
"out_channels": (3, 32, 24, 48, 120, 352),
|
| 197 |
+
"stage_idxs": (2, 3, 5),
|
| 198 |
+
"channel_multiplier": 1.1,
|
| 199 |
+
"depth_multiplier": 1.2,
|
| 200 |
+
"drop_rate": 0.3,
|
| 201 |
+
},
|
| 202 |
+
},
|
| 203 |
+
|
| 204 |
+
"timm-efficientnet-b3": {
|
| 205 |
+
"encoder": EfficientNetEncoder,
|
| 206 |
+
"pretrained_settings": {
|
| 207 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b3"]),
|
| 208 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b3_ap"]),
|
| 209 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b3_ns"]),
|
| 210 |
+
},
|
| 211 |
+
"params": {
|
| 212 |
+
"out_channels": (3, 40, 32, 48, 136, 384),
|
| 213 |
+
"stage_idxs": (2, 3, 5),
|
| 214 |
+
"channel_multiplier": 1.2,
|
| 215 |
+
"depth_multiplier": 1.4,
|
| 216 |
+
"drop_rate": 0.3,
|
| 217 |
+
},
|
| 218 |
+
},
|
| 219 |
+
|
| 220 |
+
"timm-efficientnet-b4": {
|
| 221 |
+
"encoder": EfficientNetEncoder,
|
| 222 |
+
"pretrained_settings": {
|
| 223 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b4"]),
|
| 224 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b4_ap"]),
|
| 225 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b4_ns"]),
|
| 226 |
+
},
|
| 227 |
+
"params": {
|
| 228 |
+
"out_channels": (3, 48, 32, 56, 160, 448),
|
| 229 |
+
"stage_idxs": (2, 3, 5),
|
| 230 |
+
"channel_multiplier": 1.4,
|
| 231 |
+
"depth_multiplier": 1.8,
|
| 232 |
+
"drop_rate": 0.4,
|
| 233 |
+
},
|
| 234 |
+
},
|
| 235 |
+
|
| 236 |
+
"timm-efficientnet-b5": {
|
| 237 |
+
"encoder": EfficientNetEncoder,
|
| 238 |
+
"pretrained_settings": {
|
| 239 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b5"]),
|
| 240 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b5_ap"]),
|
| 241 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b5_ns"]),
|
| 242 |
+
},
|
| 243 |
+
"params": {
|
| 244 |
+
"out_channels": (3, 48, 40, 64, 176, 512),
|
| 245 |
+
"stage_idxs": (2, 3, 5),
|
| 246 |
+
"channel_multiplier": 1.6,
|
| 247 |
+
"depth_multiplier": 2.2,
|
| 248 |
+
"drop_rate": 0.4,
|
| 249 |
+
},
|
| 250 |
+
},
|
| 251 |
+
|
| 252 |
+
"timm-efficientnet-b6": {
|
| 253 |
+
"encoder": EfficientNetEncoder,
|
| 254 |
+
"pretrained_settings": {
|
| 255 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b6"]),
|
| 256 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b6_ap"]),
|
| 257 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b6_ns"]),
|
| 258 |
+
},
|
| 259 |
+
"params": {
|
| 260 |
+
"out_channels": (3, 56, 40, 72, 200, 576),
|
| 261 |
+
"stage_idxs": (2, 3, 5),
|
| 262 |
+
"channel_multiplier": 1.8,
|
| 263 |
+
"depth_multiplier": 2.6,
|
| 264 |
+
"drop_rate": 0.5,
|
| 265 |
+
},
|
| 266 |
+
},
|
| 267 |
+
|
| 268 |
+
"timm-efficientnet-b7": {
|
| 269 |
+
"encoder": EfficientNetEncoder,
|
| 270 |
+
"pretrained_settings": {
|
| 271 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b7"]),
|
| 272 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b7_ap"]),
|
| 273 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b7_ns"]),
|
| 274 |
+
},
|
| 275 |
+
"params": {
|
| 276 |
+
"out_channels": (3, 64, 48, 80, 224, 640),
|
| 277 |
+
"stage_idxs": (2, 3, 5),
|
| 278 |
+
"channel_multiplier": 2.0,
|
| 279 |
+
"depth_multiplier": 3.1,
|
| 280 |
+
"drop_rate": 0.5,
|
| 281 |
+
},
|
| 282 |
+
},
|
| 283 |
+
|
| 284 |
+
"timm-efficientnet-b8": {
|
| 285 |
+
"encoder": EfficientNetEncoder,
|
| 286 |
+
"pretrained_settings": {
|
| 287 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b8"]),
|
| 288 |
+
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b8_ap"]),
|
| 289 |
+
},
|
| 290 |
+
"params": {
|
| 291 |
+
"out_channels": (3, 72, 56, 88, 248, 704),
|
| 292 |
+
"stage_idxs": (2, 3, 5),
|
| 293 |
+
"channel_multiplier": 2.2,
|
| 294 |
+
"depth_multiplier": 3.6,
|
| 295 |
+
"drop_rate": 0.5,
|
| 296 |
+
},
|
| 297 |
+
},
|
| 298 |
+
|
| 299 |
+
"timm-efficientnet-l2": {
|
| 300 |
+
"encoder": EfficientNetEncoder,
|
| 301 |
+
"pretrained_settings": {
|
| 302 |
+
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_l2_ns"]),
|
| 303 |
+
},
|
| 304 |
+
"params": {
|
| 305 |
+
"out_channels": (3, 136, 104, 176, 480, 1376),
|
| 306 |
+
"stage_idxs": (2, 3, 5),
|
| 307 |
+
"channel_multiplier": 4.3,
|
| 308 |
+
"depth_multiplier": 5.3,
|
| 309 |
+
"drop_rate": 0.5,
|
| 310 |
+
},
|
| 311 |
+
},
|
| 312 |
+
|
| 313 |
+
"timm-tf_efficientnet_lite0": {
|
| 314 |
+
"encoder": EfficientNetLiteEncoder,
|
| 315 |
+
"pretrained_settings": {
|
| 316 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite0"]),
|
| 317 |
+
},
|
| 318 |
+
"params": {
|
| 319 |
+
"out_channels": (3, 32, 24, 40, 112, 320),
|
| 320 |
+
"stage_idxs": (2, 3, 5),
|
| 321 |
+
"channel_multiplier": 1.0,
|
| 322 |
+
"depth_multiplier": 1.0,
|
| 323 |
+
"drop_rate": 0.2,
|
| 324 |
+
},
|
| 325 |
+
},
|
| 326 |
+
|
| 327 |
+
"timm-tf_efficientnet_lite1": {
|
| 328 |
+
"encoder": EfficientNetLiteEncoder,
|
| 329 |
+
"pretrained_settings": {
|
| 330 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite1"]),
|
| 331 |
+
},
|
| 332 |
+
"params": {
|
| 333 |
+
"out_channels": (3, 32, 24, 40, 112, 320),
|
| 334 |
+
"stage_idxs": (2, 3, 5),
|
| 335 |
+
"channel_multiplier": 1.0,
|
| 336 |
+
"depth_multiplier": 1.1,
|
| 337 |
+
"drop_rate": 0.2,
|
| 338 |
+
},
|
| 339 |
+
},
|
| 340 |
+
|
| 341 |
+
"timm-tf_efficientnet_lite2": {
|
| 342 |
+
"encoder": EfficientNetLiteEncoder,
|
| 343 |
+
"pretrained_settings": {
|
| 344 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite2"]),
|
| 345 |
+
},
|
| 346 |
+
"params": {
|
| 347 |
+
"out_channels": (3, 32, 24, 48, 120, 352),
|
| 348 |
+
"stage_idxs": (2, 3, 5),
|
| 349 |
+
"channel_multiplier": 1.1,
|
| 350 |
+
"depth_multiplier": 1.2,
|
| 351 |
+
"drop_rate": 0.3,
|
| 352 |
+
},
|
| 353 |
+
},
|
| 354 |
+
|
| 355 |
+
"timm-tf_efficientnet_lite3": {
|
| 356 |
+
"encoder": EfficientNetLiteEncoder,
|
| 357 |
+
"pretrained_settings": {
|
| 358 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite3"]),
|
| 359 |
+
},
|
| 360 |
+
"params": {
|
| 361 |
+
"out_channels": (3, 32, 32, 48, 136, 384),
|
| 362 |
+
"stage_idxs": (2, 3, 5),
|
| 363 |
+
"channel_multiplier": 1.2,
|
| 364 |
+
"depth_multiplier": 1.4,
|
| 365 |
+
"drop_rate": 0.3,
|
| 366 |
+
},
|
| 367 |
+
},
|
| 368 |
+
|
| 369 |
+
"timm-tf_efficientnet_lite4": {
|
| 370 |
+
"encoder": EfficientNetLiteEncoder,
|
| 371 |
+
"pretrained_settings": {
|
| 372 |
+
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite4"]),
|
| 373 |
+
},
|
| 374 |
+
"params": {
|
| 375 |
+
"out_channels": (3, 32, 32, 56, 160, 448),
|
| 376 |
+
"stage_idxs": (2, 3, 5),
|
| 377 |
+
"channel_multiplier": 1.4,
|
| 378 |
+
"depth_multiplier": 1.8,
|
| 379 |
+
"drop_rate": 0.4,
|
| 380 |
+
},
|
| 381 |
+
},
|
| 382 |
+
}
|