Spaces:
Runtime error
Runtime error
| from ._base import EncoderMixin | |
| from timm.models.resnet import ResNet | |
| from timm.models.resnest import ResNestBottleneck | |
| import torch.nn as nn | |
| class ResNestEncoder(ResNet, EncoderMixin): | |
| def __init__(self, out_channels, depth=5, **kwargs): | |
| super().__init__(**kwargs) | |
| self._depth = depth | |
| self._out_channels = out_channels | |
| self._in_channels = 3 | |
| del self.fc | |
| del self.global_pool | |
| def get_stages(self): | |
| return [ | |
| nn.Identity(), | |
| nn.Sequential(self.conv1, self.bn1, self.act1), | |
| nn.Sequential(self.maxpool, self.layer1), | |
| self.layer2, | |
| self.layer3, | |
| self.layer4, | |
| ] | |
| def make_dilated(self, stage_list, dilation_list): | |
| raise ValueError("ResNest encoders do not support dilated mode") | |
| def forward(self, x): | |
| stages = self.get_stages() | |
| features = [] | |
| for i in range(self._depth + 1): | |
| x = stages[i](x) | |
| features.append(x) | |
| return features | |
| def load_state_dict(self, state_dict, **kwargs): | |
| state_dict.pop("fc.bias", None) | |
| state_dict.pop("fc.weight", None) | |
| super().load_state_dict(state_dict, **kwargs) | |
| resnest_weights = { | |
| 'timm-resnest14d': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth' | |
| }, | |
| 'timm-resnest26d': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth' | |
| }, | |
| 'timm-resnest50d': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth', | |
| }, | |
| 'timm-resnest101e': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth', | |
| }, | |
| 'timm-resnest200e': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth', | |
| }, | |
| 'timm-resnest269e': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth', | |
| }, | |
| 'timm-resnest50d_4s2x40d': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth', | |
| }, | |
| 'timm-resnest50d_1s4x24d': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth', | |
| } | |
| } | |
| pretrained_settings = {} | |
| for model_name, sources in resnest_weights.items(): | |
| pretrained_settings[model_name] = {} | |
| for source_name, source_url in sources.items(): | |
| pretrained_settings[model_name][source_name] = { | |
| "url": source_url, | |
| 'input_size': [3, 224, 224], | |
| 'input_range': [0, 1], | |
| 'mean': [0.485, 0.456, 0.406], | |
| 'std': [0.229, 0.224, 0.225], | |
| 'num_classes': 1000 | |
| } | |
| timm_resnest_encoders = { | |
| 'timm-resnest14d': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest14d"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [1, 1, 1, 1], | |
| 'stem_type': 'deep', | |
| 'stem_width': 32, | |
| 'avg_down': True, | |
| 'base_width': 64, | |
| 'cardinality': 1, | |
| 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} | |
| } | |
| }, | |
| 'timm-resnest26d': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest26d"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [2, 2, 2, 2], | |
| 'stem_type': 'deep', | |
| 'stem_width': 32, | |
| 'avg_down': True, | |
| 'base_width': 64, | |
| 'cardinality': 1, | |
| 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} | |
| } | |
| }, | |
| 'timm-resnest50d': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest50d"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [3, 4, 6, 3], | |
| 'stem_type': 'deep', | |
| 'stem_width': 32, | |
| 'avg_down': True, | |
| 'base_width': 64, | |
| 'cardinality': 1, | |
| 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} | |
| } | |
| }, | |
| 'timm-resnest101e': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest101e"], | |
| 'params': { | |
| 'out_channels': (3, 128, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [3, 4, 23, 3], | |
| 'stem_type': 'deep', | |
| 'stem_width': 64, | |
| 'avg_down': True, | |
| 'base_width': 64, | |
| 'cardinality': 1, | |
| 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} | |
| } | |
| }, | |
| 'timm-resnest200e': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest200e"], | |
| 'params': { | |
| 'out_channels': (3, 128, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [3, 24, 36, 3], | |
| 'stem_type': 'deep', | |
| 'stem_width': 64, | |
| 'avg_down': True, | |
| 'base_width': 64, | |
| 'cardinality': 1, | |
| 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} | |
| } | |
| }, | |
| 'timm-resnest269e': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest269e"], | |
| 'params': { | |
| 'out_channels': (3, 128, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [3, 30, 48, 8], | |
| 'stem_type': 'deep', | |
| 'stem_width': 64, | |
| 'avg_down': True, | |
| 'base_width': 64, | |
| 'cardinality': 1, | |
| 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} | |
| }, | |
| }, | |
| 'timm-resnest50d_4s2x40d': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [3, 4, 6, 3], | |
| 'stem_type': 'deep', | |
| 'stem_width': 32, | |
| 'avg_down': True, | |
| 'base_width': 40, | |
| 'cardinality': 2, | |
| 'block_args': {'radix': 4, 'avd': True, 'avd_first': True} | |
| } | |
| }, | |
| 'timm-resnest50d_1s4x24d': { | |
| 'encoder': ResNestEncoder, | |
| "pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': ResNestBottleneck, | |
| 'layers': [3, 4, 6, 3], | |
| 'stem_type': 'deep', | |
| 'stem_width': 32, | |
| 'avg_down': True, | |
| 'base_width': 24, | |
| 'cardinality': 4, | |
| 'block_args': {'radix': 1, 'avd': True, 'avd_first': True} | |
| } | |
| } | |
| } | |