Spaces:
Runtime error
Runtime error
| from ._base import EncoderMixin | |
| from timm.models.resnet import ResNet | |
| from timm.models.res2net import Bottle2neck | |
| import torch.nn as nn | |
| class Res2NetEncoder(ResNet, EncoderMixin): | |
| def __init__(self, out_channels, depth=5, **kwargs): | |
| super().__init__(**kwargs) | |
| self._depth = depth | |
| self._out_channels = out_channels | |
| self._in_channels = 3 | |
| del self.fc | |
| del self.global_pool | |
| def get_stages(self): | |
| return [ | |
| nn.Identity(), | |
| nn.Sequential(self.conv1, self.bn1, self.act1), | |
| nn.Sequential(self.maxpool, self.layer1), | |
| self.layer2, | |
| self.layer3, | |
| self.layer4, | |
| ] | |
| def make_dilated(self, stage_list, dilation_list): | |
| raise ValueError("Res2Net encoders do not support dilated mode") | |
| def forward(self, x): | |
| stages = self.get_stages() | |
| features = [] | |
| for i in range(self._depth + 1): | |
| x = stages[i](x) | |
| features.append(x) | |
| return features | |
| def load_state_dict(self, state_dict, **kwargs): | |
| state_dict.pop("fc.bias", None) | |
| state_dict.pop("fc.weight", None) | |
| super().load_state_dict(state_dict, **kwargs) | |
| res2net_weights = { | |
| 'timm-res2net50_26w_4s': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth' | |
| }, | |
| 'timm-res2net50_48w_2s': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth' | |
| }, | |
| 'timm-res2net50_14w_8s': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth', | |
| }, | |
| 'timm-res2net50_26w_6s': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth', | |
| }, | |
| 'timm-res2net50_26w_8s': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth', | |
| }, | |
| 'timm-res2net101_26w_4s': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth', | |
| }, | |
| 'timm-res2next50': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth', | |
| } | |
| } | |
| pretrained_settings = {} | |
| for model_name, sources in res2net_weights.items(): | |
| pretrained_settings[model_name] = {} | |
| for source_name, source_url in sources.items(): | |
| pretrained_settings[model_name][source_name] = { | |
| "url": source_url, | |
| 'input_size': [3, 224, 224], | |
| 'input_range': [0, 1], | |
| 'mean': [0.485, 0.456, 0.406], | |
| 'std': [0.229, 0.224, 0.225], | |
| 'num_classes': 1000 | |
| } | |
| timm_res2net_encoders = { | |
| 'timm-res2net50_26w_4s': { | |
| 'encoder': Res2NetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-res2net50_26w_4s"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': Bottle2neck, | |
| 'layers': [3, 4, 6, 3], | |
| 'base_width': 26, | |
| 'block_args': {'scale': 4} | |
| }, | |
| }, | |
| 'timm-res2net101_26w_4s': { | |
| 'encoder': Res2NetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-res2net101_26w_4s"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': Bottle2neck, | |
| 'layers': [3, 4, 23, 3], | |
| 'base_width': 26, | |
| 'block_args': {'scale': 4} | |
| }, | |
| }, | |
| 'timm-res2net50_26w_6s': { | |
| 'encoder': Res2NetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-res2net50_26w_6s"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': Bottle2neck, | |
| 'layers': [3, 4, 6, 3], | |
| 'base_width': 26, | |
| 'block_args': {'scale': 6} | |
| }, | |
| }, | |
| 'timm-res2net50_26w_8s': { | |
| 'encoder': Res2NetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-res2net50_26w_8s"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': Bottle2neck, | |
| 'layers': [3, 4, 6, 3], | |
| 'base_width': 26, | |
| 'block_args': {'scale': 8} | |
| }, | |
| }, | |
| 'timm-res2net50_48w_2s': { | |
| 'encoder': Res2NetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-res2net50_48w_2s"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': Bottle2neck, | |
| 'layers': [3, 4, 6, 3], | |
| 'base_width': 48, | |
| 'block_args': {'scale': 2} | |
| }, | |
| }, | |
| 'timm-res2net50_14w_8s': { | |
| 'encoder': Res2NetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-res2net50_14w_8s"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': Bottle2neck, | |
| 'layers': [3, 4, 6, 3], | |
| 'base_width': 14, | |
| 'block_args': {'scale': 8} | |
| }, | |
| }, | |
| 'timm-res2next50': { | |
| 'encoder': Res2NetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-res2next50"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': Bottle2neck, | |
| 'layers': [3, 4, 6, 3], | |
| 'base_width': 4, | |
| 'cardinality': 8, | |
| 'block_args': {'scale': 4} | |
| }, | |
| } | |
| } | |