Spaces:
Runtime error
Runtime error
| """ Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` | |
| Attributes: | |
| _out_channels (list of int): specify number of channels for each encoder feature tensor | |
| _depth (int): specify number of stages in decoder (in other words number of downsampling operations) | |
| _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) | |
| Methods: | |
| forward(self, x: torch.Tensor) | |
| produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of | |
| shape NCHW (features should be sorted in descending order according to spatial resolution, starting | |
| with resolution same as input `x` tensor). | |
| Input: `x` with shape (1, 3, 64, 64) | |
| Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes | |
| [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), | |
| (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) | |
| also should support number of features according to specified depth, e.g. if depth = 5, | |
| number of feature tensors = 6 (one with same resolution as input and 5 downsampled), | |
| depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). | |
| """ | |
| import torch.nn as nn | |
| from pretrainedmodels.models.senet import ( | |
| SENet, | |
| SEBottleneck, | |
| SEResNetBottleneck, | |
| SEResNeXtBottleneck, | |
| pretrained_settings, | |
| ) | |
| from ._base import EncoderMixin | |
| class SENetEncoder(SENet, EncoderMixin): | |
| def __init__(self, out_channels, depth=5, **kwargs): | |
| super().__init__(**kwargs) | |
| self._out_channels = out_channels | |
| self._depth = depth | |
| self._in_channels = 3 | |
| del self.last_linear | |
| del self.avg_pool | |
| def get_stages(self): | |
| return [ | |
| nn.Identity(), | |
| self.layer0[:-1], | |
| nn.Sequential(self.layer0[-1], self.layer1), | |
| self.layer2, | |
| self.layer3, | |
| self.layer4, | |
| ] | |
| def forward(self, x): | |
| stages = self.get_stages() | |
| features = [] | |
| for i in range(self._depth + 1): | |
| x = stages[i](x) | |
| features.append(x) | |
| return features | |
| def load_state_dict(self, state_dict, **kwargs): | |
| state_dict.pop("last_linear.bias", None) | |
| state_dict.pop("last_linear.weight", None) | |
| super().load_state_dict(state_dict, **kwargs) | |
| senet_encoders = { | |
| "senet154": { | |
| "encoder": SENetEncoder, | |
| "pretrained_settings": pretrained_settings["senet154"], | |
| "params": { | |
| "out_channels": (3, 128, 256, 512, 1024, 2048), | |
| "block": SEBottleneck, | |
| "dropout_p": 0.2, | |
| "groups": 64, | |
| "layers": [3, 8, 36, 3], | |
| "num_classes": 1000, | |
| "reduction": 16, | |
| }, | |
| }, | |
| "se_resnet50": { | |
| "encoder": SENetEncoder, | |
| "pretrained_settings": pretrained_settings["se_resnet50"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": SEResNetBottleneck, | |
| "layers": [3, 4, 6, 3], | |
| "downsample_kernel_size": 1, | |
| "downsample_padding": 0, | |
| "dropout_p": None, | |
| "groups": 1, | |
| "inplanes": 64, | |
| "input_3x3": False, | |
| "num_classes": 1000, | |
| "reduction": 16, | |
| }, | |
| }, | |
| "se_resnet101": { | |
| "encoder": SENetEncoder, | |
| "pretrained_settings": pretrained_settings["se_resnet101"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": SEResNetBottleneck, | |
| "layers": [3, 4, 23, 3], | |
| "downsample_kernel_size": 1, | |
| "downsample_padding": 0, | |
| "dropout_p": None, | |
| "groups": 1, | |
| "inplanes": 64, | |
| "input_3x3": False, | |
| "num_classes": 1000, | |
| "reduction": 16, | |
| }, | |
| }, | |
| "se_resnet152": { | |
| "encoder": SENetEncoder, | |
| "pretrained_settings": pretrained_settings["se_resnet152"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": SEResNetBottleneck, | |
| "layers": [3, 8, 36, 3], | |
| "downsample_kernel_size": 1, | |
| "downsample_padding": 0, | |
| "dropout_p": None, | |
| "groups": 1, | |
| "inplanes": 64, | |
| "input_3x3": False, | |
| "num_classes": 1000, | |
| "reduction": 16, | |
| }, | |
| }, | |
| "se_resnext50_32x4d": { | |
| "encoder": SENetEncoder, | |
| "pretrained_settings": pretrained_settings["se_resnext50_32x4d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": SEResNeXtBottleneck, | |
| "layers": [3, 4, 6, 3], | |
| "downsample_kernel_size": 1, | |
| "downsample_padding": 0, | |
| "dropout_p": None, | |
| "groups": 32, | |
| "inplanes": 64, | |
| "input_3x3": False, | |
| "num_classes": 1000, | |
| "reduction": 16, | |
| }, | |
| }, | |
| "se_resnext101_32x4d": { | |
| "encoder": SENetEncoder, | |
| "pretrained_settings": pretrained_settings["se_resnext101_32x4d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": SEResNeXtBottleneck, | |
| "layers": [3, 4, 23, 3], | |
| "downsample_kernel_size": 1, | |
| "downsample_padding": 0, | |
| "dropout_p": None, | |
| "groups": 32, | |
| "inplanes": 64, | |
| "input_3x3": False, | |
| "num_classes": 1000, | |
| "reduction": 16, | |
| }, | |
| }, | |
| } | |