Spaces:
Runtime error
Runtime error
| """ Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` | |
| Attributes: | |
| _out_channels (list of int): specify number of channels for each encoder feature tensor | |
| _depth (int): specify number of stages in decoder (in other words number of downsampling operations) | |
| _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) | |
| Methods: | |
| forward(self, x: torch.Tensor) | |
| produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of | |
| shape NCHW (features should be sorted in descending order according to spatial resolution, starting | |
| with resolution same as input `x` tensor). | |
| Input: `x` with shape (1, 3, 64, 64) | |
| Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes | |
| [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), | |
| (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) | |
| also should support number of features according to specified depth, e.g. if depth = 5, | |
| number of feature tensors = 6 (one with same resolution as input and 5 downsampled), | |
| depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). | |
| """ | |
| from copy import deepcopy | |
| import torch.nn as nn | |
| from torchvision.models.resnet import ResNet | |
| from torchvision.models.resnet import BasicBlock | |
| from torchvision.models.resnet import Bottleneck | |
| from pretrainedmodels.models.torchvision_models import pretrained_settings | |
| from ._base import EncoderMixin | |
| class ResNetEncoder(ResNet, EncoderMixin): | |
| def __init__(self, out_channels, depth=5, **kwargs): | |
| super().__init__(**kwargs) | |
| self._depth = depth | |
| self._out_channels = out_channels | |
| self._in_channels = 3 | |
| del self.fc | |
| del self.avgpool | |
| def get_stages(self): | |
| return [ | |
| nn.Identity(), | |
| nn.Sequential(self.conv1, self.bn1, self.relu), | |
| nn.Sequential(self.maxpool, self.layer1), | |
| self.layer2, | |
| self.layer3, | |
| self.layer4, | |
| ] | |
| def forward(self, x): | |
| stages = self.get_stages() | |
| features = [] | |
| for i in range(self._depth + 1): | |
| x = stages[i](x) | |
| features.append(x) | |
| return features | |
| def load_state_dict(self, state_dict, **kwargs): | |
| state_dict.pop("fc.bias", None) | |
| state_dict.pop("fc.weight", None) | |
| super().load_state_dict(state_dict, **kwargs) | |
| new_settings = { | |
| "resnet18": { | |
| "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth", | |
| "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth" | |
| }, | |
| "resnet50": { | |
| "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth", | |
| "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth" | |
| }, | |
| "resnext50_32x4d": { | |
| "imagenet": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", | |
| "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth", | |
| "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth", | |
| }, | |
| "resnext101_32x4d": { | |
| "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth", | |
| "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth" | |
| }, | |
| "resnext101_32x8d": { | |
| "imagenet": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", | |
| "instagram": "https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth", | |
| "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth", | |
| "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth", | |
| }, | |
| "resnext101_32x16d": { | |
| "instagram": "https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth", | |
| "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth", | |
| "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth", | |
| }, | |
| "resnext101_32x32d": { | |
| "instagram": "https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth", | |
| }, | |
| "resnext101_32x48d": { | |
| "instagram": "https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth", | |
| } | |
| } | |
| pretrained_settings = deepcopy(pretrained_settings) | |
| for model_name, sources in new_settings.items(): | |
| if model_name not in pretrained_settings: | |
| pretrained_settings[model_name] = {} | |
| for source_name, source_url in sources.items(): | |
| pretrained_settings[model_name][source_name] = { | |
| "url": source_url, | |
| 'input_size': [3, 224, 224], | |
| 'input_range': [0, 1], | |
| 'mean': [0.485, 0.456, 0.406], | |
| 'std': [0.229, 0.224, 0.225], | |
| 'num_classes': 1000 | |
| } | |
| resnet_encoders = { | |
| "resnet18": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnet18"], | |
| "params": { | |
| "out_channels": (3, 64, 64, 128, 256, 512), | |
| "block": BasicBlock, | |
| "layers": [2, 2, 2, 2], | |
| }, | |
| }, | |
| "resnet34": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnet34"], | |
| "params": { | |
| "out_channels": (3, 64, 64, 128, 256, 512), | |
| "block": BasicBlock, | |
| "layers": [3, 4, 6, 3], | |
| }, | |
| }, | |
| "resnet50": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnet50"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 6, 3], | |
| }, | |
| }, | |
| "resnet101": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnet101"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 23, 3], | |
| }, | |
| }, | |
| "resnet152": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnet152"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 8, 36, 3], | |
| }, | |
| }, | |
| "resnext50_32x4d": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnext50_32x4d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 6, 3], | |
| "groups": 32, | |
| "width_per_group": 4, | |
| }, | |
| }, | |
| "resnext101_32x4d": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnext101_32x4d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 23, 3], | |
| "groups": 32, | |
| "width_per_group": 4, | |
| }, | |
| }, | |
| "resnext101_32x8d": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnext101_32x8d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 23, 3], | |
| "groups": 32, | |
| "width_per_group": 8, | |
| }, | |
| }, | |
| "resnext101_32x16d": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnext101_32x16d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 23, 3], | |
| "groups": 32, | |
| "width_per_group": 16, | |
| }, | |
| }, | |
| "resnext101_32x32d": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnext101_32x32d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 23, 3], | |
| "groups": 32, | |
| "width_per_group": 32, | |
| }, | |
| }, | |
| "resnext101_32x48d": { | |
| "encoder": ResNetEncoder, | |
| "pretrained_settings": pretrained_settings["resnext101_32x48d"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 2048), | |
| "block": Bottleneck, | |
| "layers": [3, 4, 23, 3], | |
| "groups": 32, | |
| "width_per_group": 48, | |
| }, | |
| }, | |
| } | |