Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| import torch | |
| from torchvision.ops.boxes import nms as nms_torch | |
| import torch.nn.functional as F | |
| import math | |
| from functools import partial | |
| def nms(dets, thresh): | |
| return nms_torch(dets[:, :4], dets[:, 4], thresh) | |
| class SeparableConvBlock(nn.Module): | |
| def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False): | |
| super(SeparableConvBlock, self).__init__() | |
| if out_channels is None: | |
| out_channels = in_channels | |
| # Q: whether separate conv | |
| # share bias between depthwise_conv and pointwise_conv | |
| # or just pointwise_conv apply bias. | |
| # A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias. | |
| self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels, | |
| kernel_size=3, stride=1, groups=in_channels, bias=False) | |
| self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1) | |
| self.norm = norm | |
| if self.norm: | |
| # Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow | |
| self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3) | |
| self.activation = activation | |
| if self.activation: | |
| self.swish = MemoryEfficientSwish() if not onnx_export else Swish() | |
| def forward(self, x): | |
| x = self.depthwise_conv(x) | |
| x = self.pointwise_conv(x) | |
| if self.norm: | |
| x = self.bn(x) | |
| if self.activation: | |
| x = self.swish(x) | |
| return x | |
| class BiFPN(nn.Module): | |
| def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True, | |
| use_p8=False): | |
| """ | |
| Args: | |
| num_channels: | |
| conv_channels: | |
| first_time: whether the input comes directly from the efficientnet, | |
| if True, downchannel it first, and downsample P5 to generate P6 then P7 | |
| epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon | |
| onnx_export: if True, use Swish instead of MemoryEfficientSwish | |
| """ | |
| super(BiFPN, self).__init__() | |
| self.epsilon = epsilon | |
| self.use_p8 = use_p8 | |
| # Conv layers | |
| self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| if use_p8: | |
| self.conv7_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| self.conv8_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) | |
| # Feature scaling layers | |
| self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') | |
| self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') | |
| self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') | |
| self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') | |
| self.p4_downsample = MaxPool2dStaticSamePadding(3, 2) | |
| self.p5_downsample = MaxPool2dStaticSamePadding(3, 2) | |
| self.p6_downsample = MaxPool2dStaticSamePadding(3, 2) | |
| self.p7_downsample = MaxPool2dStaticSamePadding(3, 2) | |
| if use_p8: | |
| self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest') | |
| self.p8_downsample = MaxPool2dStaticSamePadding(3, 2) | |
| self.swish = MemoryEfficientSwish() if not onnx_export else Swish() | |
| self.first_time = first_time | |
| if self.first_time: | |
| self.p5_down_channel = nn.Sequential( | |
| Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), | |
| nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), | |
| ) | |
| self.p4_down_channel = nn.Sequential( | |
| Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), | |
| nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), | |
| ) | |
| self.p3_down_channel = nn.Sequential( | |
| Conv2dStaticSamePadding(conv_channels[0], num_channels, 1), | |
| nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), | |
| ) | |
| self.p5_to_p6 = nn.Sequential( | |
| Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), | |
| nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), | |
| MaxPool2dStaticSamePadding(3, 2) | |
| ) | |
| self.p6_to_p7 = nn.Sequential( | |
| MaxPool2dStaticSamePadding(3, 2) | |
| ) | |
| if use_p8: | |
| self.p7_to_p8 = nn.Sequential( | |
| MaxPool2dStaticSamePadding(3, 2) | |
| ) | |
| self.p4_down_channel_2 = nn.Sequential( | |
| Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), | |
| nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), | |
| ) | |
| self.p5_down_channel_2 = nn.Sequential( | |
| Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), | |
| nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), | |
| ) | |
| # Weight | |
| self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
| self.p6_w1_relu = nn.ReLU() | |
| self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
| self.p5_w1_relu = nn.ReLU() | |
| self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
| self.p4_w1_relu = nn.ReLU() | |
| self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
| self.p3_w1_relu = nn.ReLU() | |
| self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) | |
| self.p4_w2_relu = nn.ReLU() | |
| self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) | |
| self.p5_w2_relu = nn.ReLU() | |
| self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) | |
| self.p6_w2_relu = nn.ReLU() | |
| self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
| self.p7_w2_relu = nn.ReLU() | |
| self.attention = attention | |
| def forward(self, inputs): | |
| """ | |
| illustration of a minimal bifpn unit | |
| P7_0 -------------------------> P7_2 --------> | |
| |-------------| ↑ | |
| ↓ | | |
| P6_0 ---------> P6_1 ---------> P6_2 --------> | |
| |-------------|--------------↑ ↑ | |
| ↓ | | |
| P5_0 ---------> P5_1 ---------> P5_2 --------> | |
| |-------------|--------------↑ ↑ | |
| ↓ | | |
| P4_0 ---------> P4_1 ---------> P4_2 --------> | |
| |-------------|--------------↑ ↑ | |
| |--------------↓ | | |
| P3_0 -------------------------> P3_2 --------> | |
| """ | |
| # downsample channels using same-padding conv2d to target phase's if not the same | |
| # judge: same phase as target, | |
| # if same, pass; | |
| # elif earlier phase, downsample to target phase's by pooling | |
| # elif later phase, upsample to target phase's by nearest interpolation | |
| if self.attention: | |
| outs = self._forward_fast_attention(inputs) | |
| else: | |
| outs = self._forward(inputs) | |
| return outs | |
| def _forward_fast_attention(self, inputs): | |
| if self.first_time: | |
| p3, p4, p5 = inputs | |
| p6_in = self.p5_to_p6(p5) | |
| p7_in = self.p6_to_p7(p6_in) | |
| p3_in = self.p3_down_channel(p3) | |
| p4_in = self.p4_down_channel(p4) | |
| p5_in = self.p5_down_channel(p5) | |
| else: | |
| # P3_0, P4_0, P5_0, P6_0 and P7_0 | |
| p3_in, p4_in, p5_in, p6_in, p7_in = inputs | |
| # P7_0 to P7_2 | |
| # Weights for P6_0 and P7_0 to P6_1 | |
| p6_w1 = self.p6_w1_relu(self.p6_w1) | |
| weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) | |
| # Connections for P6_0 and P7_0 to P6_1 respectively | |
| p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in))) | |
| # Weights for P5_0 and P6_1 to P5_1 | |
| p5_w1 = self.p5_w1_relu(self.p5_w1) | |
| weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) | |
| # Connections for P5_0 and P6_1 to P5_1 respectively | |
| p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up))) | |
| # Weights for P4_0 and P5_1 to P4_1 | |
| p4_w1 = self.p4_w1_relu(self.p4_w1) | |
| weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) | |
| # Connections for P4_0 and P5_1 to P4_1 respectively | |
| p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up))) | |
| # Weights for P3_0 and P4_1 to P3_2 | |
| p3_w1 = self.p3_w1_relu(self.p3_w1) | |
| weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) | |
| # Connections for P3_0 and P4_1 to P3_2 respectively | |
| p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up))) | |
| if self.first_time: | |
| p4_in = self.p4_down_channel_2(p4) | |
| p5_in = self.p5_down_channel_2(p5) | |
| # Weights for P4_0, P4_1 and P3_2 to P4_2 | |
| p4_w2 = self.p4_w2_relu(self.p4_w2) | |
| weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon) | |
| # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively | |
| p4_out = self.conv4_down( | |
| self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out))) | |
| # Weights for P5_0, P5_1 and P4_2 to P5_2 | |
| p5_w2 = self.p5_w2_relu(self.p5_w2) | |
| weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon) | |
| # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively | |
| p5_out = self.conv5_down( | |
| self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out))) | |
| # Weights for P6_0, P6_1 and P5_2 to P6_2 | |
| p6_w2 = self.p6_w2_relu(self.p6_w2) | |
| weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon) | |
| # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively | |
| p6_out = self.conv6_down( | |
| self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out))) | |
| # Weights for P7_0 and P6_2 to P7_2 | |
| p7_w2 = self.p7_w2_relu(self.p7_w2) | |
| weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon) | |
| # Connections for P7_0 and P6_2 to P7_2 | |
| p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out))) | |
| return p3_out, p4_out, p5_out, p6_out, p7_out | |
| def _forward(self, inputs): | |
| if self.first_time: | |
| p3, p4, p5 = inputs | |
| p6_in = self.p5_to_p6(p5) | |
| p7_in = self.p6_to_p7(p6_in) | |
| if self.use_p8: | |
| p8_in = self.p7_to_p8(p7_in) | |
| p3_in = self.p3_down_channel(p3) | |
| p4_in = self.p4_down_channel(p4) | |
| p5_in = self.p5_down_channel(p5) | |
| else: | |
| if self.use_p8: | |
| # P3_0, P4_0, P5_0, P6_0, P7_0 and P8_0 | |
| p3_in, p4_in, p5_in, p6_in, p7_in, p8_in = inputs | |
| else: | |
| # P3_0, P4_0, P5_0, P6_0 and P7_0 | |
| p3_in, p4_in, p5_in, p6_in, p7_in = inputs | |
| if self.use_p8: | |
| # P8_0 to P8_2 | |
| # Connections for P7_0 and P8_0 to P7_1 respectively | |
| p7_up = self.conv7_up(self.swish(p7_in + self.p7_upsample(p8_in))) | |
| # Connections for P6_0 and P7_0 to P6_1 respectively | |
| p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_up))) | |
| else: | |
| # P7_0 to P7_2 | |
| # Connections for P6_0 and P7_0 to P6_1 respectively | |
| p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in))) | |
| # Connections for P5_0 and P6_1 to P5_1 respectively | |
| p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up))) | |
| # Connections for P4_0 and P5_1 to P4_1 respectively | |
| p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up))) | |
| # Connections for P3_0 and P4_1 to P3_2 respectively | |
| p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up))) | |
| if self.first_time: | |
| p4_in = self.p4_down_channel_2(p4) | |
| p5_in = self.p5_down_channel_2(p5) | |
| # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively | |
| p4_out = self.conv4_down( | |
| self.swish(p4_in + p4_up + self.p4_downsample(p3_out))) | |
| # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively | |
| p5_out = self.conv5_down( | |
| self.swish(p5_in + p5_up + self.p5_downsample(p4_out))) | |
| # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively | |
| p6_out = self.conv6_down( | |
| self.swish(p6_in + p6_up + self.p6_downsample(p5_out))) | |
| if self.use_p8: | |
| # Connections for P7_0, P7_1 and P6_2 to P7_2 respectively | |
| p7_out = self.conv7_down( | |
| self.swish(p7_in + p7_up + self.p7_downsample(p6_out))) | |
| # Connections for P8_0 and P7_2 to P8_2 | |
| p8_out = self.conv8_down(self.swish(p8_in + self.p8_downsample(p7_out))) | |
| return p3_out, p4_out, p5_out, p6_out, p7_out, p8_out | |
| else: | |
| # Connections for P7_0 and P6_2 to P7_2 | |
| p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out))) | |
| return p3_out, p4_out, p5_out, p6_out, p7_out | |
| class Regressor(nn.Module): | |
| def __init__(self, in_channels, num_anchors, num_layers, pyramid_levels=5, onnx_export=False): | |
| super(Regressor, self).__init__() | |
| self.num_layers = num_layers | |
| self.conv_list = nn.ModuleList( | |
| [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) | |
| self.bn_list = nn.ModuleList( | |
| [nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in | |
| range(pyramid_levels)]) | |
| self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False) | |
| self.swish = MemoryEfficientSwish() if not onnx_export else Swish() | |
| def forward(self, inputs): | |
| feats = [] | |
| for feat, bn_list in zip(inputs, self.bn_list): | |
| for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list): | |
| feat = conv(feat) | |
| feat = bn(feat) | |
| feat = self.swish(feat) | |
| feat = self.header(feat) | |
| feat = feat.permute(0, 2, 3, 1) | |
| feat = feat.contiguous().view(feat.shape[0], -1, 4) | |
| feats.append(feat) | |
| feats = torch.cat(feats, dim=1) | |
| return feats | |
| class Conv3x3BNSwish(nn.Module): | |
| def __init__(self, in_channels, out_channels, upsample=False): | |
| super().__init__() | |
| self.swish = Swish() | |
| self.upsample = upsample | |
| self.block = nn.Sequential( | |
| Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=(3, 3), stride=1, padding=1, bias=False), | |
| nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
| ) | |
| self.conv_sp = SeparableConvBlock(out_channels, onnx_export=False) | |
| # self.block = nn.Sequential( | |
| # nn.Conv2d( | |
| # in_channels, out_channels, (3, 3), stride=1, padding=1, bias=False | |
| # ), | |
| # nn.GroupNorm(32, out_channels), | |
| # nn.ReLU(inplace=True), | |
| # ) | |
| def forward(self, x): | |
| x = self.conv_sp(self.swish(self.block(x))) | |
| if self.upsample: | |
| x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True) | |
| return x | |
| class SegmentationBlock(nn.Module): | |
| def __init__(self, in_channels, out_channels, n_upsamples=0): | |
| super().__init__() | |
| blocks = [Conv3x3BNSwish(in_channels, out_channels, upsample=bool(n_upsamples))] | |
| if n_upsamples > 1: | |
| for _ in range(1, n_upsamples): | |
| blocks.append(Conv3x3BNSwish(out_channels, out_channels, upsample=True)) | |
| self.block = nn.Sequential(*blocks) | |
| def forward(self, x): | |
| return self.block(x) | |
| class MergeBlock(nn.Module): | |
| def __init__(self, policy): | |
| super().__init__() | |
| if policy not in ["add", "cat"]: | |
| raise ValueError( | |
| "`merge_policy` must be one of: ['add', 'cat'], got {}".format( | |
| policy | |
| ) | |
| ) | |
| self.policy = policy | |
| def forward(self, x): | |
| if self.policy == 'add': | |
| return sum(x) | |
| elif self.policy == 'cat': | |
| return torch.cat(x, dim=1) | |
| else: | |
| raise ValueError( | |
| "`merge_policy` must be one of: ['add', 'cat'], got {}".format(self.policy) | |
| ) | |
| class BiFPNDecoder(nn.Module): | |
| def __init__( | |
| self, | |
| encoder_depth=5, | |
| pyramid_channels=64, | |
| segmentation_channels=64, | |
| dropout=0.2, | |
| merge_policy="add", ): | |
| super().__init__() | |
| self.seg_blocks = nn.ModuleList([ | |
| SegmentationBlock(pyramid_channels, segmentation_channels, n_upsamples=n_upsamples) | |
| for n_upsamples in [5,4, 3, 2, 1] | |
| ]) | |
| self.seg_p2 = SegmentationBlock(32, 64, n_upsamples=0) | |
| self.merge = MergeBlock(merge_policy) | |
| self.dropout = nn.Dropout2d(p=dropout, inplace=True) | |
| def forward(self, inputs): | |
| p2, p3, p4, p5, p6, p7 = inputs | |
| feature_pyramid = [seg_block(p) for seg_block, p in zip(self.seg_blocks, [p7, p6, p5, p4, p3])] | |
| p2 = self.seg_p2(p2) | |
| p3,p4,p5,p6,p7 = feature_pyramid | |
| x = self.merge((p2,p3,p4,p5,p6,p7)) | |
| x = self.dropout(x) | |
| return x | |
| class Classifier(nn.Module): | |
| def __init__(self, in_channels, num_anchors, num_classes, num_layers, pyramid_levels=5, onnx_export=False): | |
| super(Classifier, self).__init__() | |
| self.num_anchors = num_anchors | |
| self.num_classes = num_classes | |
| self.num_layers = num_layers | |
| self.conv_list = nn.ModuleList( | |
| [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) | |
| self.bn_list = nn.ModuleList( | |
| [nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in | |
| range(pyramid_levels)]) | |
| self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False) | |
| self.swish = MemoryEfficientSwish() if not onnx_export else Swish() | |
| def forward(self, inputs): | |
| feats = [] | |
| for feat, bn_list in zip(inputs, self.bn_list): | |
| for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list): | |
| feat = conv(feat) | |
| feat = bn(feat) | |
| feat = self.swish(feat) | |
| feat = self.header(feat) | |
| feat = feat.permute(0, 2, 3, 1) | |
| feat = feat.contiguous().view(feat.shape[0], feat.shape[1], feat.shape[2], self.num_anchors, | |
| self.num_classes) | |
| feat = feat.contiguous().view(feat.shape[0], -1, self.num_classes) | |
| feats.append(feat) | |
| feats = torch.cat(feats, dim=1) | |
| feats = feats.sigmoid() | |
| return feats | |
| class SwishImplementation(torch.autograd.Function): | |
| def forward(ctx, i): | |
| result = i * torch.sigmoid(i) | |
| ctx.save_for_backward(i) | |
| return result | |
| def backward(ctx, grad_output): | |
| i = ctx.saved_variables[0] | |
| sigmoid_i = torch.sigmoid(i) | |
| return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) | |
| class MemoryEfficientSwish(nn.Module): | |
| def forward(self, x): | |
| return SwishImplementation.apply(x) | |
| class Swish(nn.Module): | |
| def forward(self, x): | |
| return x * torch.sigmoid(x) | |
| def drop_connect(inputs, p, training): | |
| """ Drop connect. """ | |
| if not training: return inputs | |
| batch_size = inputs.shape[0] | |
| keep_prob = 1 - p | |
| random_tensor = keep_prob | |
| random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) | |
| binary_tensor = torch.floor(random_tensor) | |
| output = inputs / keep_prob * binary_tensor | |
| return output | |
| def get_same_padding_conv2d(image_size=None): | |
| """ Chooses static padding if you have specified an image size, and dynamic padding otherwise. | |
| Static padding is necessary for ONNX exporting of models. """ | |
| if image_size is None: | |
| return Conv2dDynamicSamePadding | |
| else: | |
| return partial(Conv2dStaticSamePadding, image_size=image_size) | |
| class Conv2dDynamicSamePadding(nn.Conv2d): | |
| """ 2D Convolutions like TensorFlow, for a dynamic image size """ | |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): | |
| super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) | |
| self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 | |
| def forward(self, x): | |
| ih, iw = x.size()[-2:] | |
| kh, kw = self.weight.size()[-2:] | |
| sh, sw = self.stride | |
| oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) | |
| pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) | |
| pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) | |
| if pad_h > 0 or pad_w > 0: | |
| x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) | |
| return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) | |
| class MBConvBlock(nn.Module): | |
| """ | |
| Mobile Inverted Residual Bottleneck Block | |
| Args: | |
| block_args (namedtuple): BlockArgs, see above | |
| global_params (namedtuple): GlobalParam, see above | |
| Attributes: | |
| has_se (bool): Whether the block contains a Squeeze and Excitation layer. | |
| """ | |
| def __init__(self, block_args, global_params): | |
| super().__init__() | |
| self._block_args = block_args | |
| self._bn_mom = 1 - global_params.batch_norm_momentum | |
| self._bn_eps = global_params.batch_norm_epsilon | |
| self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) | |
| self.id_skip = block_args.id_skip # skip connection and drop connect | |
| # Get static or dynamic convolution depending on image size | |
| Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) | |
| # Expansion phase | |
| inp = self._block_args.input_filters # number of input channels | |
| oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels | |
| if self._block_args.expand_ratio != 1: | |
| self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) | |
| self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) | |
| # Depthwise convolution phase | |
| k = self._block_args.kernel_size | |
| s = self._block_args.stride | |
| self._depthwise_conv = Conv2d( | |
| in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise | |
| kernel_size=k, stride=s, bias=False) | |
| self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) | |
| # Squeeze and Excitation layer, if desired | |
| if self.has_se: | |
| num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) | |
| self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) | |
| self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) | |
| # Output phase | |
| final_oup = self._block_args.output_filters | |
| self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) | |
| self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) | |
| self._swish = MemoryEfficientSwish() | |
| def forward(self, inputs, drop_connect_rate=None): | |
| """ | |
| :param inputs: input tensor | |
| :param drop_connect_rate: drop connect rate (float, between 0 and 1) | |
| :return: output of block | |
| """ | |
| # Expansion and Depthwise Convolution | |
| x = inputs | |
| if self._block_args.expand_ratio != 1: | |
| x = self._expand_conv(inputs) | |
| x = self._bn0(x) | |
| x = self._swish(x) | |
| x = self._depthwise_conv(x) | |
| x = self._bn1(x) | |
| x = self._swish(x) | |
| # Squeeze and Excitation | |
| if self.has_se: | |
| x_squeezed = F.adaptive_avg_pool2d(x, 1) | |
| x_squeezed = self._se_reduce(x_squeezed) | |
| x_squeezed = self._swish(x_squeezed) | |
| x_squeezed = self._se_expand(x_squeezed) | |
| x = torch.sigmoid(x_squeezed) * x | |
| x = self._project_conv(x) | |
| x = self._bn2(x) | |
| # Skip connection and drop connect | |
| input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters | |
| if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: | |
| if drop_connect_rate: | |
| x = drop_connect(x, p=drop_connect_rate, training=self.training) | |
| x = x + inputs # skip connection | |
| return x | |
| def set_swish(self, memory_efficient=True): | |
| """Sets swish function as memory efficient (for training) or standard (for export)""" | |
| self._swish = MemoryEfficientSwish() if memory_efficient else Swish() | |
| class Conv2dStaticSamePadding(nn.Module): | |
| """ | |
| The real keras/tensorflow conv2d with same padding | |
| """ | |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, groups=1, dilation=1, **kwargs): | |
| super().__init__() | |
| self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, | |
| bias=bias, groups=groups) | |
| self.stride = self.conv.stride | |
| self.kernel_size = self.conv.kernel_size | |
| self.dilation = self.conv.dilation | |
| if isinstance(self.stride, int): | |
| self.stride = [self.stride] * 2 | |
| elif len(self.stride) == 1: | |
| self.stride = [self.stride[0]] * 2 | |
| if isinstance(self.kernel_size, int): | |
| self.kernel_size = [self.kernel_size] * 2 | |
| elif len(self.kernel_size) == 1: | |
| self.kernel_size = [self.kernel_size[0]] * 2 | |
| def forward(self, x): | |
| h, w = x.shape[-2:] | |
| extra_h = (math.ceil(w / self.stride[1]) - 1) * self.stride[1] - w + self.kernel_size[1] | |
| extra_v = (math.ceil(h / self.stride[0]) - 1) * self.stride[0] - h + self.kernel_size[0] | |
| left = extra_h // 2 | |
| right = extra_h - left | |
| top = extra_v // 2 | |
| bottom = extra_v - top | |
| x = F.pad(x, [left, right, top, bottom]) | |
| x = self.conv(x) | |
| return x | |
| class MaxPool2dStaticSamePadding(nn.Module): | |
| """ | |
| The real keras/tensorflow MaxPool2d with same padding | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__() | |
| self.pool = nn.MaxPool2d(*args, **kwargs) | |
| self.stride = self.pool.stride | |
| self.kernel_size = self.pool.kernel_size | |
| if isinstance(self.stride, int): | |
| self.stride = [self.stride] * 2 | |
| elif len(self.stride) == 1: | |
| self.stride = [self.stride[0]] * 2 | |
| if isinstance(self.kernel_size, int): | |
| self.kernel_size = [self.kernel_size] * 2 | |
| elif len(self.kernel_size) == 1: | |
| self.kernel_size = [self.kernel_size[0]] * 2 | |
| def forward(self, x): | |
| h, w = x.shape[-2:] | |
| extra_h = (math.ceil(w / self.stride[1]) - 1) * self.stride[1] - w + self.kernel_size[1] | |
| extra_v = (math.ceil(h / self.stride[0]) - 1) * self.stride[0] - h + self.kernel_size[0] | |
| left = extra_h // 2 | |
| right = extra_h - left | |
| top = extra_v // 2 | |
| bottom = extra_v - top | |
| x = F.pad(x, [left, right, top, bottom]) | |
| x = self.pool(x) | |
| return x | |
| class Activation(nn.Module): | |
| def __init__(self, name, **params): | |
| super().__init__() | |
| if name is None or name == 'identity': | |
| self.activation = nn.Identity(**params) | |
| elif name == 'sigmoid': | |
| self.activation = nn.Sigmoid() | |
| elif name == 'softmax2d': | |
| self.activation = nn.Softmax(dim=1, **params) | |
| elif name == 'softmax': | |
| self.activation = nn.Softmax(**params) | |
| elif name == 'logsoftmax': | |
| self.activation = nn.LogSoftmax(**params) | |
| elif name == 'tanh': | |
| self.activation = nn.Tanh() | |
| # elif name == 'argmax': | |
| # self.activation = ArgMax(**params) | |
| # elif name == 'argmax2d': | |
| # self.activation = ArgMax(dim=1, **params) | |
| # elif name == 'clamp': | |
| # self.activation = Clamp(**params) | |
| elif callable(name): | |
| self.activation = name(**params) | |
| else: | |
| raise ValueError('Activation should be callable/sigmoid/softmax/logsoftmax/tanh/None; got {}'.format(name)) | |
| def forward(self, x): | |
| return self.activation(x) | |
| class SegmentationHead(nn.Sequential): | |
| def __init__(self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1): | |
| conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2) | |
| upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity() | |
| activation = Activation(activation) | |
| super().__init__(conv2d, upsampling, activation) | |
| class ClassificationHead(nn.Sequential): | |
| def __init__(self, in_channels, classes, pooling="avg", dropout=0.2, activation=None): | |
| if pooling not in ("max", "avg"): | |
| raise ValueError("Pooling should be one of ('max', 'avg'), got {}.".format(pooling)) | |
| pool = nn.AdaptiveAvgPool2d(1) if pooling == 'avg' else nn.AdaptiveMaxPool2d(1) | |
| flatten = nn.Flatten() | |
| dropout = nn.Dropout(p=dropout, inplace=True) if dropout else nn.Identity() | |
| linear = nn.Linear(in_channels, classes, bias=True) | |
| activation = Activation(activation) | |
| super().__init__(pool, flatten, dropout, linear, activation) | |
| if __name__ == '__main__': | |
| from tensorboardX import SummaryWriter | |
| def count_parameters(model): | |
| return sum(p.numel() for p in model.parameters() if p.requires_grad) | |