Spaces:
Runtime error
Runtime error
| # Auto-anchor utils | |
| import numpy as np | |
| import torch | |
| import yaml | |
| from scipy.cluster.vq import kmeans | |
| from tqdm import tqdm | |
| import math | |
| def check_anchor_order(anchors, anchor_grid, stride): | |
| # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary | |
| a = anchor_grid.prod(-1).view(-1) # anchor area | |
| da = a[-1] - a[0] # delta a | |
| ds = stride[-1] - stride[0] # delta s | |
| if da.sign() != ds.sign(): # same order | |
| print('Reversing anchor order') | |
| anchors[:] = anchors.flip(0) | |
| anchor_grid[:] = anchor_grid.flip(0) | |
| return anchors, anchor_grid, stride | |
| def run_anchor(logger, dataset, thr=4.0, imgsz=640): | |
| # default_anchors = [[3, 9, 5, 11, 4, 20], [7, 18, 6, 39, 12, 31], [19, 50, 38, 81, 68, 157]] | |
| # nl = len(default_anchors) # number of detection layers 3 | |
| # na = len(default_anchors[0]) // 2 # number of anchors 3 | |
| # anchors = torch.tensor(default_anchors, | |
| # device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| # ).float().view(nl, -1, 2) | |
| # anchor_num = na * nl | |
| anchor_num = 9 | |
| new_anchors = kmean_anchors(dataset, n=anchor_num, img_size=imgsz, thr=thr, gen=1000, verbose=False) | |
| scales = [0, None, None] | |
| scales[1] = math.log2(np.mean(new_anchors[1::3][:, 0] / new_anchors[0::3][:, 0])) | |
| scales[2] = math.log2(np.mean(new_anchors[2::3][:, 0] / new_anchors[0::3][:, 0])) | |
| scales = [round(2 ** x, 2) for x in scales] | |
| normalized_anchors = new_anchors / np.sqrt(new_anchors.prod(axis=1, keepdims=True)) | |
| ratios = [(1.0, 1.0), None, None] | |
| ratios[1] = (np.mean(normalized_anchors[:, 0]), np.mean(normalized_anchors[:, 1])) | |
| ratios[2] = (np.mean(normalized_anchors[:, 1]), np.mean(normalized_anchors[:, 0])) | |
| ratios = [(round(x, 2), round(y, 2)) for x, y in ratios] | |
| print("New scales:", scales) | |
| print("New ratios:", ratios) | |
| print('New anchors saved to model. Update model config to use these anchors in the future.') | |
| return str(scales), str(ratios) | |
| def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): | |
| """ Creates kmeans-evolved anchors from training dataset | |
| Arguments: | |
| path: path to dataset *.yaml, or a loaded dataset | |
| n: number of anchors | |
| img_size: image size used for training | |
| thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 | |
| gen: generations to evolve anchors using genetic algorithm | |
| verbose: print all results | |
| Return: | |
| k: kmeans evolved anchors | |
| Usage: | |
| from utils.autoanchor import *; _ = kmean_anchors() | |
| """ | |
| thr = 1. / thr | |
| def metric(k, wh): # compute metrics | |
| r = wh[:, None] / k[None] | |
| x = torch.min(r, 1. / r).min(2)[0] # ratio metric | |
| # x = wh_iou(wh, torch.tensor(k)) # iou metric | |
| return x, x.max(1)[0] # x, best_x | |
| def anchor_fitness(k): # mutation fitness | |
| _, best = metric(torch.tensor(k, dtype=torch.float32), wh) | |
| return (best * (best > thr).float()).mean() # fitness | |
| def print_results(k): | |
| k = k[np.argsort(k.prod(1))] # sort small to large | |
| x, best = metric(k, wh0) | |
| bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr | |
| print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) | |
| print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % | |
| (n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') | |
| for i, x in enumerate(k): | |
| print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg | |
| return k | |
| if isinstance(path, str): # not class | |
| raise TypeError('Dataset must be class, but found str') | |
| else: | |
| dataset = path # dataset | |
| labels = [db['label'] for db in dataset.db] | |
| labels = np.vstack(labels) | |
| if not (labels[:, 1:] <= 1).all(): | |
| # normalize label | |
| labels[:, [2, 4]] /= dataset.shapes[0] | |
| labels[:, [1, 3]] /= dataset.shapes[1] | |
| # Get label wh | |
| shapes = img_size * dataset.shapes / dataset.shapes.max() | |
| # wh0 = np.concatenate([l[:, 3:5] * shapes for l in labels]) # wh | |
| wh0 = labels[:, 3:5] * shapes | |
| # Filter | |
| i = (wh0 < 3.0).any(1).sum() | |
| if i: | |
| print('WARNING: Extremely small objects found. ' | |
| '%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0))) | |
| wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels | |
| # Kmeans calculation | |
| print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) | |
| s = wh.std(0) # sigmas for whitening | |
| k, dist = kmeans(wh / s, n, iter=30) # points, mean distance | |
| k *= s | |
| wh = torch.tensor(wh, dtype=torch.float32) # filtered | |
| wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered | |
| k = print_results(k) | |
| # Plot | |
| # k, d = [None] * 20, [None] * 20 | |
| # for i in tqdm(range(1, 21)): | |
| # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance | |
| # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) | |
| # ax = ax.ravel() | |
| # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') | |
| # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh | |
| # ax[0].hist(wh[wh[:, 0]<100, 0],400) | |
| # ax[1].hist(wh[wh[:, 1]<100, 1],400) | |
| # fig.savefig('wh.png', dpi=200) | |
| # Evolve | |
| npr = np.random | |
| f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma | |
| pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar | |
| for _ in pbar: | |
| v = np.ones(sh) | |
| while (v == 1).all(): # mutate until a change occurs (prevent duplicates) | |
| v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) | |
| kg = (k.copy() * v).clip(min=2.0) | |
| fg = anchor_fitness(kg) | |
| if fg > f: | |
| f, k = fg, kg.copy() | |
| pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f | |
| if verbose: | |
| print_results(k) | |
| return print_results(k) |