Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| from pathlib import Path | |
| import ignite.distributed as idist | |
| import torch | |
| from torch import optim | |
| from scenedino.losses import make_loss | |
| from scenedino.common.ray_sampler import ( | |
| RaySampler, | |
| get_ray_sampler, | |
| ) | |
| from scenedino.common.io.configs import load_model_config | |
| from scenedino.models import make_model | |
| from scenedino.training.trainer import BTSWrapper, get_dataflow | |
| from scenedino.training.base_trainer import base_training | |
| from scenedino.common.scheduler import make_scheduler | |
| from scenedino.renderer import NeRFRenderer | |
| from scenedino.common import util | |
| from torch.cuda.amp import autocast | |
| logger = logging.getLogger("training") | |
| class BTSDownstreamWrapper(BTSWrapper): | |
| def __init__( | |
| self, renderer: NeRFRenderer, ray_sampler: RaySampler, config, eval_nvs=False, dino_channels=None | |
| ) -> None: | |
| super().__init__(renderer, ray_sampler, config, eval_nvs, dino_channels) | |
| for param in super().parameters(True): | |
| param.requires_grad_(False) | |
| for param in renderer.net.downstream_head.parameters(True): | |
| param.requires_grad_(True) | |
| self.sample_radius_3d = config.get("sample_radius_3d", 0.5) | |
| def forward(self, data): | |
| with torch.no_grad(): | |
| # TODO: CLEAN THIS UP | |
| if self.renderer.net.downstream_head.training and len(data["imgs"]) > 1 and torch.rand(1).item() < 0.5: | |
| # side view | |
| encode_id = torch.randint(low=4, high=8, size=(1,)).item() | |
| # Segmentation only present in front view | |
| data.pop("segs") | |
| else: | |
| encode_id = 0 | |
| data["imgs"] = [data["imgs"][encode_id]] | |
| data["projs"] = [data["projs"][encode_id]] | |
| data["poses"] = [data["poses"][encode_id]] | |
| data = self.forward_downstream(data, id_encoder=0) | |
| if not self.renderer.net.downstream_head.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization_seg": | |
| dino_module = self.renderer.net.encoder | |
| dino_module.visualization.n_kmeans_clusters = 19 | |
| for _data_coarse in data["coarse"]: | |
| with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False): | |
| dino_module.fit_visualization(_data_coarse["dino_features"].float().flatten(0, -2)) | |
| _data_coarse["vis_batch_dino_features"] = [ | |
| dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0), | |
| dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3), | |
| dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6), | |
| ] | |
| #_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"]) | |
| data = self.renderer.net.downstream_head.forward_training(data, visualize=not self.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization_seg") | |
| return data | |
| def forward_downstream(self, data, id_encoder): | |
| data = dict(data) | |
| images = torch.stack(data["imgs"], dim=1) # B, n_framnes, c, h, w | |
| poses = torch.stack(data["poses"], dim=1) # B, n_framnes, 4, 4 w2c | |
| projs = torch.stack(data["projs"], dim=1) # B, n_frames, 4, 4 (-1, 1) | |
| n, n_frames, c, h, w = images.shape | |
| with autocast(enabled=False): | |
| to_base_pose = torch.inverse(poses[:, :1, :, :]) | |
| poses = to_base_pose.expand(-1, n_frames, -1, -1) @ poses | |
| ids_encoder = [id_encoder] | |
| ids_loss = ids_encoder | |
| ids_renderer = ids_encoder | |
| ip = self.train_image_processor if self.training else self.val_image_processor | |
| images_ip = ip(images) | |
| self.renderer.net.compute_grid_transforms( | |
| projs[:, ids_encoder], poses[:, ids_encoder] | |
| ) | |
| self.renderer.net.encode( | |
| images, | |
| projs, | |
| poses, | |
| ids_encoder=ids_encoder, | |
| ids_render=ids_renderer, | |
| ids_loss=ids_loss, | |
| images_alt=images_ip, | |
| combine_ids=None, | |
| color_frame_filter=None, | |
| ) | |
| sampler = self.ray_sampler if self.training else self.val_sampler | |
| renderer_scale = self.renderer.net._scale | |
| dino_features = self.renderer.net.grid_l_loss_features[renderer_scale] | |
| if self.artifact_field is not None: | |
| dino_features = torch.cat(torch.broadcast_tensors(dino_features, self.artifact_field), dim=2) | |
| all_rays, all_rgb_gt, all_dino_gt = sampler.sample( | |
| images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss, | |
| dino_features=dino_features | |
| ) | |
| if self.artifact_field is not None: | |
| all_dino_artifacts = all_dino_gt[:, :, self.artifact_field.shape[0]:] | |
| all_dino_gt = all_dino_gt[:, :, :self.artifact_field.shape[0]] | |
| else: | |
| all_dino_artifacts = None | |
| data["fine"], data["coarse"] = [], [] | |
| scales = list( | |
| self.renderer.net.encoder.scales | |
| if self.prediction_mode == "multiscale" | |
| else [self.renderer.net.get_scale()] | |
| ) | |
| for scale in scales: | |
| self.renderer.net.set_scale(scale) | |
| using_fine = self.renderer.renderer.using_fine | |
| if scale == 0: | |
| render_dict = self.renderer( | |
| all_rays, | |
| want_weights=True, | |
| want_alphas=True, | |
| want_rgb_samps=True, | |
| ) | |
| else: | |
| using_fine = self.renderer.renderer.using_fine | |
| self.renderer.renderer.using_fine = False | |
| render_dict = self.renderer( | |
| all_rays, | |
| want_weights=True, | |
| want_alphas=True, | |
| want_rgb_samps=False, | |
| ) | |
| self.renderer.renderer.using_fine = using_fine | |
| render_dict["rgb_gt"] = all_rgb_gt | |
| render_dict["rays"] = all_rays | |
| render_dict["dino_gt"] = all_dino_gt.float() | |
| if all_dino_artifacts is not None: | |
| render_dict["dino_artifacts"] = all_dino_artifacts.float() | |
| render_dict = sampler.reconstruct(render_dict, | |
| channels=images_ip.shape[2], | |
| dino_channels=self.renderer.net.encoder.dino_pca_dim) | |
| if "fine" in render_dict: | |
| data["fine"].append(render_dict["fine"]) | |
| data["coarse"].append(render_dict["coarse"]) | |
| data["rgb_gt"] = render_dict["rgb_gt"] | |
| data["dino_gt"] = render_dict["dino_gt"] | |
| if "dino_artifacts" in render_dict: | |
| data["dino_artifacts"] = render_dict["dino_artifacts"] | |
| data["rays"] = render_dict["rays"] | |
| dino_module = self.renderer.net.encoder | |
| downsampling_mode = "patch" if self.training else "image" | |
| for _data_coarse in data["coarse"]: | |
| _data_coarse["dino_features"] = dino_module.expand_dim(_data_coarse["dino_features"]) | |
| downsampling_result = dino_module.downsample(_data_coarse["dino_features"], downsampling_mode) | |
| if isinstance(downsampling_result, tuple): | |
| (_data_coarse["dino_features_downsampled"], | |
| _data_coarse["dino_features_salience_map"], | |
| _data_coarse["dino_features_weight_map"], | |
| _data_coarse["dino_features_per_patch_weight"]) = downsampling_result | |
| elif downsampling_result is not None: | |
| _data_coarse["dino_features_downsampled"] = downsampling_result | |
| if not self.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization": | |
| for _data_coarse in data["coarse"]: | |
| with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False): | |
| dino_module.fit_visualization(_data_coarse["dino_features"].flatten(0, -2)) | |
| _data_coarse["vis_batch_dino_features"] = [ | |
| dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0), | |
| dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3), | |
| dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6), | |
| ] | |
| #_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"]) | |
| if self.training: | |
| data["feature_volume"] = self.renderer.net.grid_f_features[0] | |
| data["z_near"] = torch.tensor(self.ray_sampler.z_near, device=images.device) | |
| data["z_far"] = torch.tensor(self.ray_sampler.z_far, device=images.device) | |
| surface_sample = self.sample_3d_crop(poses, projs, data["coarse"][0]["depth"], sample_radius=self.sample_radius_3d) | |
| if surface_sample is not None: | |
| data["sample_surface_dino_features"], data["sample_surface_sigma"] = surface_sample | |
| if self.training: | |
| self._counter += 1 | |
| return data | |
| def sample_3d_crop(self, poses, projs, depth, z_far=100, n_crops=5, n_samples=576, sample_radius=0.5, sigma_threshold=0.5): | |
| positions_samples = [] | |
| n = projs.size(0) | |
| oversampling = 4 | |
| for n_ in range(n): | |
| focals = projs[n_, :1, [0, 1], [0, 1]] | |
| centers = projs[n_, :1, [0, 1], [2, 2]] | |
| _, _, height, width = depth.shape | |
| rays, _ = util.gen_rays( | |
| poses[n_, :1].view(-1, 4, 4), | |
| width, | |
| height, | |
| focal=focals, | |
| c=centers, | |
| z_near=0, | |
| z_far=0, | |
| norm_dir=True, | |
| ) | |
| current_depth = depth[n_, 0] # [h, w] | |
| limits = torch.quantile(current_depth[current_depth < z_far], torch.range(0, 1, 1/n_crops).cuda()) | |
| sampled_positions = [] | |
| for i in range(n_crops): | |
| valid_positions = torch.nonzero((current_depth > limits[i]) & (current_depth < limits[i+1]), as_tuple=False) | |
| if valid_positions.size(0) > 0: # Not enough samples in depth range | |
| sampled_positions.append(valid_positions[torch.randint(valid_positions.size(0), (1,)).item()]) | |
| n_crops = len(sampled_positions) | |
| if n_crops > 0: | |
| sampled_positions = torch.stack(sampled_positions, dim=0) | |
| cam_centers = rays[0, :, :, :3] # [h, w, 3] | |
| cam_raydir = rays[0, :, :, 3:6] # [h, w, 3] | |
| depth_crop = current_depth[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops] | |
| cam_centers_crop = cam_centers[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3] | |
| cam_raydir_crop = cam_raydir[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3] | |
| positions_crop = cam_centers_crop + cam_raydir_crop * depth_crop.unsqueeze(-1) # [n_crops, 3] | |
| # Sample in unit sphere | |
| unit_vecs = torch.randn(n_crops, oversampling*n_samples, 3, device=positions_crop.device) # [n_crops, n_samples, 3] | |
| unit_vecs /= torch.norm(unit_vecs, dim=2, keepdim=True) | |
| radii = sample_radius * torch.rand(n_crops, oversampling*n_samples, 1).cuda() ** (1/3) | |
| # Scale radius in view space | |
| # radii = radii * depth_crop[:, None, None] / 20.0 | |
| random_shifts = unit_vecs * radii | |
| positions_samples.append(positions_crop.unsqueeze(1) + random_shifts) # [n_crops, n_samples, 3] | |
| if not positions_samples: | |
| return None, None | |
| positions_samples = torch.stack(positions_samples, dim=0) # [n, n_crops, n_samples, 3] | |
| _, _, sigma, _, state_dict = self.renderer.net(positions_samples.flatten(1, -2)) # [n, n_crops*n_samples, ...] | |
| sigma = sigma.view(n * n_crops, oversampling*n_samples) | |
| dino = state_dict["dino_features"].view(n * n_crops, oversampling * n_samples, -1) | |
| valid_samples = sigma > sigma_threshold | |
| valid_crop = valid_samples.sum(-1) > n_samples | |
| if valid_crop.sum() == 0: | |
| return None, None | |
| # Keep only crops with enough valid samples | |
| sigma = sigma[valid_crop] | |
| dino = dino[valid_crop] | |
| # For each crop, take the first n_samples valid samples | |
| sigma = torch.stack([s[mask][:n_samples] for s, mask in zip(sigma, valid_samples[valid_crop])]).unsqueeze(0).unsqueeze(-1) | |
| dino = torch.stack([d[mask][:n_samples] for d, mask in zip(dino, valid_samples[valid_crop])]).unsqueeze(0) | |
| return self.renderer.net.encoder.expand_dim(dino), 1 - torch.exp(-sigma) | |
| def train(self, mode=True): | |
| super().train(False) | |
| self.renderer.net.downstream_head.train(mode) | |
| def parameters(self, recurse=True): | |
| return self.renderer.net.downstream_head.parameters(recurse) | |
| def parameters_lr(self): | |
| return self.renderer.net.downstream_head.parameters_lr() | |
| def update_model_eval(self, metrics): | |
| self.renderer.net.downstream_head.update_model_eval(metrics) | |
| def training(local_rank, config, sweep_trial=None): | |
| return base_training( | |
| local_rank, | |
| config, | |
| get_dataflow, | |
| initialize, | |
| sweep_trial, | |
| ) | |
| def initialize(config: dict): | |
| # Continue if checkpoint already exists | |
| if config["training"].get("continue", False): | |
| prefix = "training_checkpoint_" | |
| ckpts = Path(config["output"]["path"]).glob(f"{prefix}*.pt") | |
| # TODO: probably correct logic but please check | |
| training_steps = [int(ckpt.stem.split(prefix)[1]) for ckpt in ckpts] | |
| if training_steps: | |
| config["training"]["resume_from"] = ( | |
| Path(config["output"]["path"]) / f"{prefix}{max(training_steps)}.pt" | |
| ) | |
| if config["training"].get("continue", False) and config["training"].get( | |
| "resume_from", None | |
| ): | |
| config_path = Path(config["output"]["path"]) | |
| logger.info(f"Loading model config from {config_path}") | |
| load_model_config(config_path, config) | |
| net = make_model(config["model"], config["downstream"]) | |
| renderer = NeRFRenderer.from_conf(config["renderer"]) | |
| renderer = renderer.bind_parallel(net, gpus=None).eval() | |
| mode = config.get("mode", "depth") | |
| ray_sampler = get_ray_sampler(config["training"]["ray_sampler"]) | |
| model = BTSDownstreamWrapper(renderer, ray_sampler, config["model"], mode == "nvs") | |
| model = idist.auto_model(model) | |
| # TODO: make optimizer itself configurable configurable | |
| if config["training"].get("optimizer", None): | |
| optim_args = config["training"]["optimizer"]["args"].copy() | |
| optim_lr = optim_args.pop("lr") | |
| optimizer = optim.Adam( | |
| [ | |
| {"params": params, "lr": lr_factor * optim_lr} | |
| for lr_factor, params in model.parameters_lr() | |
| ], | |
| **optim_args | |
| ) | |
| optimizer = idist.auto_optim(optimizer) | |
| else: | |
| optimizer = None | |
| if config["training"].get("scheduler", None): | |
| lr_scheduler = make_scheduler(config["training"].get("scheduler", {}), optimizer) | |
| else: | |
| lr_scheduler = None | |
| criterion = [ | |
| make_loss(config_loss) | |
| for config_loss in config["training"].get("loss", []) | |
| ] | |
| return model, optimizer, criterion, lr_scheduler | |