SceneDINO / configs /train_semantic_kitti_360.yaml
jev-aleks's picture
scenedino init
9e15541
defaults:
- dataset: kitti_360_sscbench
- model: dino_downsampler
- renderer: pixelnerf
- training: semantic
- validation: semantic
- downstream: semantic
- _self_
training_type: "downstream_training"
mode: "nvs"
seed: 0
backend: null
nproc_per_node: null
with_amp: true
name: "training"
batch_size: 4
gradient_accum_factor: 1
num_workers: 6
renderer:
n_coarse : 32
n_fine : 0
n_fine_depth : 0
depth_std : 1.0
sched : []
white_bkgd : false
lindisp: true
hard_alpha_cap: true
render_mode: volumetric
eval_batch_size: 65536
normalize_dino: true
output:
path: "out/ssc-paper"
unique_id: ssc-kitti-360-sscbench
training:
epoch_length: 1000
resume_from: "<PATH-FEATURE-CHECKPOINT>.pt"
optimizer:
args:
lr: 5e-4
model:
sample_radius_3d: 0.5
downstream:
input_dim: 768
mode: "3d"
# mlp_head: true