Spaces:
Sleeping
Sleeping
Commit
·
fe851d0
1
Parent(s):
71618d0
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,47 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
st.text("Stroke")
|
| 49 |
-
|
| 50 |
-
if __name__ == "__main__":
|
| 51 |
-
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
+
st.title("Data Collection Form")
|
| 5 |
+
|
| 6 |
+
sex = st.radio("Sex", ["Female", "Male"])
|
| 7 |
+
age = st.number_input("Age", min_value=0)
|
| 8 |
+
hypertension = st.selectbox("Do you have hypertension?", [0, 1])
|
| 9 |
+
heart_disease = st.selectbox("Do you have heart disease?", [0, 1])
|
| 10 |
+
ever_married = st.selectbox("Have you ever been married?", [0, 1])
|
| 11 |
+
work_type = st.selectbox("What is your work type?", ["Never worked", "Children", "Government job", "Self-employed", "Private"])
|
| 12 |
+
residence_type = st.selectbox("What is your residence type?", ["Urban", "Rural"])
|
| 13 |
+
avg_glucose_level = st.number_input("Average Glucose Level", min_value=0.0)
|
| 14 |
+
bmi = st.number_input("BMI", min_value=0.0)
|
| 15 |
+
smoking_status = st.selectbox("What is your smoking status?", [0, 1])
|
| 16 |
+
|
| 17 |
+
submit_button = st.button("Submit")
|
| 18 |
+
|
| 19 |
+
if submit_button:
|
| 20 |
+
data = {
|
| 21 |
+
"sex": 1 if sex == "Male" else 0,
|
| 22 |
+
"age": age,
|
| 23 |
+
"hypertension": ["ever had", "never had"].index(hypertension),
|
| 24 |
+
"heart_disease": ["ever had", "never had"].index(heart_disease),
|
| 25 |
+
"ever_married": ["married","single"].index(ever_married),
|
| 26 |
+
"work_type": ["Never worked", "Children", "Government job", "Self-employed", "Private"].index(work_type),
|
| 27 |
+
"residence_type": ["Urban", "Rural"].index(residence_type),
|
| 28 |
+
"avg_glucose_level": avg_glucose_level,
|
| 29 |
+
"bmi": bmi,
|
| 30 |
+
"smoking_status": ["never smoked", "smokes"].index(smoking_status)
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
df = pd.DataFrame([data])
|
| 34 |
+
st.write("Submitted Data:")
|
| 35 |
+
st.write(df)
|
| 36 |
+
|
| 37 |
+
# Unpickle classifier
|
| 38 |
+
clf = joblib.load("stroke.pkl")
|
| 39 |
+
|
| 40 |
+
# Get prediction
|
| 41 |
+
prediction = clf.predict(df)[0]
|
| 42 |
+
|
| 43 |
+
# Output prediction
|
| 44 |
+
if prediction == 0:
|
| 45 |
+
st.text("No Stroke")
|
| 46 |
+
else:
|
| 47 |
+
st.text("Stroke")
|
|
|
|
|
|
|
|
|
|
|
|