Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from llama_index.core.prompts.prompts import SimpleInputPrompt | |
| from llama_index.llms.huggingface import HuggingFaceLLM | |
| from llama_index.legacy.embeddings.langchain import LangchainEmbedding | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| from llama_index.core import set_global_service_context, ServiceContext, VectorStoreIndex, Document | |
| from pathlib import Path | |
| import fitz # PyMuPDF | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| DESCRIPTION = """\ | |
| # Llama-2 7B Chat with Document Context | |
| This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions, now enhanced with document-based context. | |
| Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints). | |
| π For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2). | |
| π¨ Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI). | |
| """ | |
| LICENSE = """ | |
| <p/> | |
| --- | |
| As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, | |
| this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>" | |
| if torch.cuda.is_available(): | |
| model_name = "meta-llama/Llama-2-7b-chat-hf" | |
| token_file = open("HF_TOKEN.txt") | |
| auth_token = token_file.readline().strip() | |
| model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", token=auth_token) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir='./model/', token=auth_token) | |
| tokenizer.use_default_system_prompt = False | |
| # Load documents and create the index | |
| def read_pdf_to_documents(file_path): | |
| doc = fitz.open(file_path) | |
| documents = [] | |
| for page_num in range(len(doc)): | |
| page = doc.load_page(page_num) | |
| text = page.get_text() | |
| documents.append(Document(text=text)) | |
| return documents | |
| file_path = Path('/content/Full_Pamplet.pdf') # Update with your document path | |
| documents = read_pdf_to_documents(file_path) | |
| embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")) | |
| service_context = ServiceContext.from_defaults(chunk_size=1024, embed_model=embeddings) | |
| set_global_service_context(service_context) | |
| index = VectorStoreIndex.from_documents(documents) | |
| query_engine = index.as_query_engine() | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| for user, assistant in chat_history: | |
| conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| def query_model(question): | |
| response = query_engine.query(question) | |
| return response.response | |
| update_prompt_interface = gr.Interface( | |
| fn=update_system_prompt, | |
| inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=system_prompt), | |
| outputs=gr.Textbox(label="Status"), | |
| title="System Prompt Updater", | |
| description="Update the system prompt used for context." | |
| ) | |
| query_interface = gr.Interface( | |
| fn=query_model, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"), | |
| outputs=gr.Textbox(label="Response"), | |
| title="Document Query Assistant", | |
| description="Ask questions based on the conte | |