File size: 5,794 Bytes
1a87547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags/blob/main/app.py

import glob
import logging
import os

import cv2
import numpy as np
import onnxruntime
import pandas as pd
from PIL import Image
from tqdm.rich import tqdm

from animatediff.utils.util import prepare_wd14tagger

logger = logging.getLogger(__name__)


def make_square(img, target_size):
    old_size = img.shape[:2]
    desired_size = max(old_size)
    desired_size = max(desired_size, target_size)

    delta_w = desired_size - old_size[1]
    delta_h = desired_size - old_size[0]
    top, bottom = delta_h // 2, delta_h - (delta_h // 2)
    left, right = delta_w // 2, delta_w - (delta_w // 2)

    color = [255, 255, 255]
    new_im = cv2.copyMakeBorder(
        img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
    )
    return new_im

def smart_resize(img, size):
    # Assumes the image has already gone through make_square
    if img.shape[0] > size:
        img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
    elif img.shape[0] < size:
        img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
    return img


class Tagger:
    def __init__(self, general_threshold, character_threshold, ignore_tokens, with_confidence, is_danbooru_format,is_cpu):
        prepare_wd14tagger()
#        self.model = onnxruntime.InferenceSession("data/models/WD14tagger/model.onnx", providers=['CUDAExecutionProvider','CPUExecutionProvider'])
        if is_cpu:
            self.model = onnxruntime.InferenceSession("data/models/WD14tagger/model.onnx", providers=['CPUExecutionProvider'])
        else:
            self.model = onnxruntime.InferenceSession("data/models/WD14tagger/model.onnx", providers=['CUDAExecutionProvider'])
        df = pd.read_csv("data/models/WD14tagger/selected_tags.csv")
        self.tag_names = df["name"].tolist()
        self.rating_indexes = list(np.where(df["category"] == 9)[0])
        self.general_indexes = list(np.where(df["category"] == 0)[0])
        self.character_indexes = list(np.where(df["category"] == 4)[0])

        self.general_threshold = general_threshold
        self.character_threshold = character_threshold
        self.ignore_tokens = ignore_tokens
        self.with_confidence = with_confidence
        self.is_danbooru_format = is_danbooru_format

    def __call__(
            self,
            image: Image,
            ):

        _, height, width, _ = self.model.get_inputs()[0].shape

        # Alpha to white
        image = image.convert("RGBA")
        new_image = Image.new("RGBA", image.size, "WHITE")
        new_image.paste(image, mask=image)
        image = new_image.convert("RGB")
        image = np.asarray(image)

        # PIL RGB to OpenCV BGR
        image = image[:, :, ::-1]

        image = make_square(image, height)
        image = smart_resize(image, height)
        image = image.astype(np.float32)
        image = np.expand_dims(image, 0)

        input_name = self.model.get_inputs()[0].name
        label_name = self.model.get_outputs()[0].name
        probs = self.model.run([label_name], {input_name: image})[0]

        labels = list(zip(self.tag_names, probs[0].astype(float)))

        # First 4 labels are actually ratings: pick one with argmax
        ratings_names = [labels[i] for i in self.rating_indexes]
        rating = dict(ratings_names)

        # Then we have general tags: pick any where prediction confidence > threshold
        general_names = [labels[i] for i in self.general_indexes]
        general_res = [x for x in general_names if x[1] > self.general_threshold]
        general_res = dict(general_res)

        # Everything else is characters: pick any where prediction confidence > threshold
        character_names = [labels[i] for i in self.character_indexes]
        character_res = [x for x in character_names if x[1] > self.character_threshold]
        character_res = dict(character_res)

        #logger.info(f"{rating=}")
        #logger.info(f"{general_res=}")
        #logger.info(f"{character_res=}")

        general_res = {k:general_res[k] for k in (general_res.keys() - set(self.ignore_tokens)) }
        character_res = {k:character_res[k] for k in (character_res.keys() - set(self.ignore_tokens)) }

        prompt = ""

        if self.with_confidence:
            prompt = [ f"({i}:{character_res[i]:.2f})" for i in (character_res.keys()) ]
            prompt += [ f"({i}:{general_res[i]:.2f})" for i in (general_res.keys()) ]
        else:
            prompt = [ i for i in (character_res.keys()) ]
            prompt += [ i for i in (general_res.keys()) ]

        prompt = ",".join(prompt)

        if not self.is_danbooru_format:
            prompt = prompt.replace("_", " ")

        #logger.info(f"{prompt=}")
        return prompt


def get_labels(frame_dir, interval, general_threshold, character_threshold, ignore_tokens, with_confidence, is_danbooru_format, is_cpu =False):

    import torch

    result = {}
    if os.path.isdir(frame_dir):
        png_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))

        png_map ={}
        for png_path in png_list:
            basename_without_ext = os.path.splitext(os.path.basename(png_path))[0]
            png_map[int(basename_without_ext)] = png_path

        with torch.no_grad():
            tagger = Tagger(general_threshold, character_threshold, ignore_tokens, with_confidence, is_danbooru_format, is_cpu)

            for i in tqdm(range(0, len(png_list), interval ), desc=f"WD14tagger"):
                path = png_map[i]

                #logger.info(f"{path=}")

                result[str(i)] = tagger(
                    image= Image.open(path)
                )

            tagger = None

        torch.cuda.empty_cache()

    return result