Spaces:
Build error
Build error
Update app.py
Browse filesAn attempt at avx512_vnni int8 quanitzation using ONNX runtime.
app.py
CHANGED
|
@@ -1,30 +1,66 @@
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gc
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
-
import
|
| 6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
print("Loading tokenizer & model…")
|
| 14 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 15 |
-
# model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
.from_pretrained(
|
| 20 |
-
MODEL_ID,
|
| 21 |
-
torch_dtype=torch.float16,
|
| 22 |
-
# device_map="cuda",
|
| 23 |
-
quantization_config=quant_config
|
| 24 |
-
).to(DEVICE)
|
| 25 |
|
|
|
|
| 26 |
gc.collect()
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
#########
|
| 29 |
|
| 30 |
# print("Loading tokenizer & model…")
|
|
|
|
| 1 |
|
| 2 |
+
# import gc
|
| 3 |
+
|
| 4 |
+
# import gradio as gr
|
| 5 |
+
# import torch
|
| 6 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, HqqConfig
|
| 7 |
+
|
| 8 |
+
# quant_config = HqqConfig(nbits=8, group_size=64)
|
| 9 |
+
|
| 10 |
+
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
| 11 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
# print("Loading tokenizer & model…")
|
| 14 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 15 |
+
# # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
|
| 16 |
+
|
| 17 |
+
# model =\
|
| 18 |
+
# AutoModelForCausalLM\
|
| 19 |
+
# .from_pretrained(
|
| 20 |
+
# MODEL_ID,
|
| 21 |
+
# torch_dtype=torch.float16,
|
| 22 |
+
# # device_map="cuda",
|
| 23 |
+
# quantization_config=quant_config
|
| 24 |
+
# ).to(DEVICE)
|
| 25 |
+
|
| 26 |
+
#gc.collect()
|
| 27 |
+
|
| 28 |
+
#########
|
| 29 |
+
|
| 30 |
import gc
|
| 31 |
|
| 32 |
import gradio as gr
|
| 33 |
+
from transformers import AutoTokenizer
|
| 34 |
+
from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer
|
| 35 |
+
from optimum.onnxruntime.configuration import AutoQuantizationConfig
|
| 36 |
+
|
| 37 |
+
MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"
|
| 38 |
+
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 40 |
|
| 41 |
+
qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
|
| 42 |
+
quantizer = ORTQuantizer.from_pretrained(MODEL_NAME)
|
| 43 |
|
| 44 |
+
# Step 4: Perform quantization saving output in a new directory
|
| 45 |
+
quantized_model_dir = "./quantized_model"
|
| 46 |
+
print("Starting quantization...")
|
| 47 |
+
quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
del(quantizer)
|
| 51 |
+
del(qconfig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# Run garbage collection again to release memory from quantizer objects
|
| 54 |
gc.collect()
|
| 55 |
|
| 56 |
+
# Step 5: Load the quantized ONNX model for inference
|
| 57 |
+
print("Loading quantized ONNX model for inference...")
|
| 58 |
+
model = ORTModelForCausalLM.from_pretrained(quantized_model_dir)
|
| 59 |
+
|
| 60 |
+
# Garbage collection again after final loading
|
| 61 |
+
gc.collect()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
#########
|
| 65 |
|
| 66 |
# print("Loading tokenizer & model…")
|