Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,632 Bytes
9ab6494 8e2dc9a 9ab6494 8e2dc9a 9ab6494 8e2dc9a 9ab6494 8e2dc9a 9ab6494 8e2dc9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import gradio as gr
import numpy as np
import random
import json
import spaces #[uncomment to use ZeroGPU]
from diffusers import (
AutoencoderKL,
StableDiffusionXLPipeline,
DPMSolverMultistepScheduler
)
from huggingface_hub import login, hf_hub_download
from PIL import Image
# from huggingface_hub import login
from SVDNoiseUnet import NPNet64
import functools
import random
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
import torch
import torch.nn as nn
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
import accelerate
import torchsde
from SVDNoiseUnet import NPNet128
from tqdm import tqdm, trange
from itertools import islice
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Lykon/dreamshaper-xl-1-0" # Replace to the model you would like to use
from sampler import UniPCSampler
from customed_unipc_scheduler import CustomedUniPCMultistepScheduler
from spandrel import ModelLoader
precision_scope = autocast
# 1. Define image conversion functions
def pil_image_to_torch_bgr(img: Image.Image) -> torch.Tensor:
"""Convert a PIL image (RGB) to a torch tensor (BGR, uint8 -> float)."""
img = np.array(img.convert("RGB"))
img = img[:, :, ::-1] # Flip RGB to BGR
img = img.astype(np.float32) / 255.0 # Normalize to [0, 1]
img = np.transpose(img, (2, 0, 1)) # HWC to CHW
return torch.from_numpy(img.copy()).unsqueeze(0) # Add batch dimension
def torch_bgr_to_pil_image(tensor: torch.Tensor) -> Image.Image:
"""Convert a torch tensor (BGR, float) to a PIL image (RGB)."""
tensor = tensor.squeeze(0).clamp(0, 1) # Remove batch dimension and clamp
img = tensor.detach().cpu().numpy()
img = np.transpose(img, (1, 2, 0)) # CHW to HWC
img = img[:, :, ::-1] # Flip BGR to RGB
img = (img * 255.0).astype(np.uint8)
return Image.fromarray(img)
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def prepare_sdxl_pipeline_step_parameter( pipe: StableDiffusionXLPipeline
, prompts
, need_cfg
, device
, negative_prompt = None
, W = 1024
, H = 1024): # need to correct the format
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=prompts,
negative_prompt=negative_prompt,
device=device,
do_classifier_free_guidance=need_cfg,
)
# timesteps = pipe.scheduler.timesteps
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = pooled_prompt_embeds.to(device)
original_size = (W, H)
crops_coords_top_left = (0, 0)
target_size = (W, H)
text_encoder_projection_dim = None
add_time_ids = list(original_size + crops_coords_top_left + target_size)
if pipe.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = pipe.text_encoder_2.config.projection_dim
passed_add_embed_dim = (
pipe.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
)
expected_add_embed_dim = pipe.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
add_time_ids = add_time_ids.to(device)
negative_add_time_ids = add_time_ids
if need_cfg:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
ret_dict = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids
}
return prompt_embeds, ret_dict
# New helper to load a list-of-dicts preference JSON
# JSON schema: [ { 'human_preference': [int], 'prompt': str, 'file_path': [str] }, ... ]
def load_preference_json(json_path: str) -> list[dict]:
"""Load records from a JSON file formatted as a list of preference dicts."""
with open(json_path, 'r') as f:
data = json.load(f)
return data
# New helper to extract just the prompts from the preference JSON
# Returns a flat list of all 'prompt' values
def extract_prompts_from_pref_json(json_path: str) -> list[str]:
"""Load a JSON of preference records and return only the prompts."""
records = load_preference_json(json_path)
return [rec['prompt'] for rec in records]
# Example usage:
# prompts = extract_prompts_from_pref_json("path/to/preference.json")
# print(prompts)
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu',need_append_zero = True):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device) if need_append_zero else sigmas.to(device)
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def convert_caption_json_to_str(json):
caption = json["caption"]
return caption
DTYPE = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
device = "cuda"
cyberreal_repo = "cyberdelia/CyberRealisticXL"
cyberreal_filename = "CyberRealisticXLPlay_V7.0_FP16.safetensors"
cyberreal_path = hf_hub_download(
repo_id=cyberreal_repo,
filename=cyberreal_filename,
cache_dir="."
)
pipe = StableDiffusionXLPipeline.from_single_file(
cyberreal_path,
torch_dtype=DTYPE,
)
up_repo = "uwg/upscaler"
up_filename = "ESRGAN/4x_NMKD-Siax_200k.pth"
up_path = hf_hub_download(
repo_id=up_repo,
filename=up_filename,
cache_dir="."
)
upscaler = ModelLoader().load_from_file(up_path)
upscaler.to(device).eval()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
accelerator = accelerate.Accelerator()
def generate_image_with_steps(prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps):
"""Helper function to generate image with specific number of steps"""
scheduler = CustomedUniPCMultistepScheduler.from_config(pipe.scheduler.config
, solver_order = 2 if num_inference_steps==8 else 1
,denoise_to_zero = False
, use_afs = True
, use_free_predictor = False)
start_free_at_step = 4
pipe.scheduler = scheduler
pipe.to('cuda')
with torch.no_grad():
with precision_scope("cuda"):
prompts = [prompt]
latents = torch.randn(
(1, pipe.unet.config.in_channels, height // 8, width // 8),
device=device,
)
latents = latents * pipe.scheduler.init_noise_sigma
pipe.scheduler.set_timesteps(num_inference_steps)
idx = 0
register_free_upblock2d(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
register_free_crossattn_upblock2d(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
for t in tqdm(pipe.scheduler.timesteps):
# Still not enough. I will tell you, what is the best implementation. Although not via the following code.
# if idx == len(pipe.scheduler.timesteps) - 1:
# break
if idx == start_free_at_step:#(6 if num_inference_steps == 8 else 4):
register_free_upblock2d(pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.9)
register_free_crossattn_upblock2d(pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.9)
latent_model_input = torch.cat([latents] * 2)
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input , timestep=t)
negative_prompts = 'lowres, bad anatomy, bad hands, watermark'
negative_prompts = 1 * [negative_prompts]
use_afs = True
use_free_predictor = False
prompt_embeds, cond_kwargs = prepare_sdxl_pipeline_step_parameter(pipe
, prompts
, need_cfg=True
, device=pipe.device
, negative_prompt=negative_prompts
, W=width
, H=height)
if idx == 0 and use_afs:
noise_pred = latent_model_input * 0.98
elif idx == len(pipe.scheduler.timesteps) - 1 and use_free_predictor:
noise_pred = None
else:
noise_pred = pipe.unet(latent_model_input
, t
, encoder_hidden_states=prompt_embeds.to(device=latents.device, dtype=latents.dtype)
, added_cond_kwargs=cond_kwargs).sample
if noise_pred is not None:
uncond, cond = noise_pred.chunk(2)
noise_pred = uncond + (cond - uncond) * guidance_scale
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
idx += 1
x_samples_ddim = pipe.vae.decode(latents / pipe.vae.config.scaling_factor).sample
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
if True:
for x_sample in x_samples_ddim:
# x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))#.save( os.path.join(sample_path, f"{base_count:05}.png"))
input_image_tensor = pil_image_to_torch_bgr(img).to(device)
output_tensor = upscaler(input_image_tensor)
output_image_pil = torch_bgr_to_pil_image(output_tensor)
return output_image_pil
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
resolution,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Parse resolution string into width and height
width, height = map(int, resolution.split('x'))
# Generate image with selected steps
image_quick = generate_image_with_steps(prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config
, final_sigmas_type="sigma_min"
, algorithm_type="sde-dpmsolver++"
, use_karras_sigmas=True)
# Generate image with 50 steps for high quality
negative_prompts = 'lowres, bad anatomy, bad hands, watermark'
negative_prompts = 1 * [negative_prompts]
image_50_steps = pipe(prompt=[prompt]
,negative_prompt=negative_prompts
,num_inference_steps=30
,guidance_scale=4.0
,height=height
,width=width).images
for x_sample in image_50_steps:
input_image_tensor = pil_image_to_torch_bgr(x_sample).to(device)
output_tensor = upscaler(input_image_tensor)
img_4k_org = torch_bgr_to_pil_image(output_tensor)
return image_quick, img_4k_org, seed
examples = [
"ultra-realistic 8k RAW portrait of a serious Black man in 1920s Harlem, standing on a bustling vintage city street, wearing a textured vintage wool suit, striped dress shirt, bold colorful tie, and a brown felt fedora, cinematic lighting with soft shadows on his deeply expressive face, timeless and melancholic mood, blurred storefronts and pedestrians in background, analog film grain, slightly desaturated color palette, medium format lens capturing fine skin texture, worn fabric, and atmospheric detail, Harlem Renaissance style, captured in natural light, shallow depth of field",
"An ultra-realistic 8k HDR editorial photograph of a soft-featured young woman with auburn hair tucked under a linen bonnet, pale freckled skin and downcast eyes filled with quiet resilience, dressed in a modest 1875 working-class Victorian dress with worn shawl, standing near a bustling street market in London, surrounded by wooden carts, hanging meats, and soot-stained brick buildings, soft overcast light and rising chimney smoke blending into a hazy amber atmosphere, cinematic lens depth with visible film grain and rich Kodak Portra-style color grading, historical fashion editorial with immersive composition and a contemplative, narrative mood",
"A weathered Victorian house surrounded by lush autumn foliage and overgrown garden paths, its deep teal-painted wood faded and peeling, orange leaves scattering across the stone steps and tangled in the railings of the ornate wooden porch, delicate orange wildflowers growing from cracks in the stairs, arched twin doors with stained glass glowing faintly from within, warm golden light filtering through dusted windows, a few butterflies fluttering through the crisp autumn air, the scene bathed in soft daylight with painterly shadows, magical realism meets gothic nostalgia, cinematic composition with high detail and storybook charm, photorealistic yet slightly stylized, peaceful and enchanted with a hint of mystery",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks() as demo:
gr.HTML(f"<style>{css}</style>")
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Hyperparameters are all you need")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Our fast inference Result using afs to get 1 free steps")
result = gr.Image(label="Quick Result", show_label=False)
with gr.Column():
gr.Markdown("### official 30 steps result")
result_30_steps = gr.Image(label="30 Steps Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
resolution = gr.Dropdown(
choices=[
"1024x1024",
"1216x832",
"832x1216"
],
value="832x1216",
label="Resolution",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=5.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Dropdown(
choices=[6, 7, 8],
value=8,
label="Number of inference steps",
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
resolution,
guidance_scale,
num_inference_steps,
],
outputs=[result, result_20_steps, seed],
)
if __name__ == "__main__":
demo.launch()
|