gh-diffusion / app.py
chrisjayden's picture
Update app.py
09759e3 verified
import gradio as gr
from diffusers import StableDiffusionImg2ImgPipeline
import torch
from PIL import Image
# Load the model
model_id = "nitrosocke/Ghibli-Diffusion"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
# Move pipeline to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipe.to(device)
# Define the inference function
def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance_scale=7.5, num_steps=50):
if input_image is None:
raise gr.Error("No image uploaded! Please upload an image before clicking Transform.")
# Process the input image (keep it as PIL Image)
try:
init_image = input_image.convert("RGB").resize((768, 768))
except Exception as e:
raise gr.Error(f"Failed to process image: {str(e)}")
# Generate the Ghibli-style image
try:
output = pipe(
prompt=prompt,
image=init_image,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_steps # Use the UI-provided value
).images[0]
except Exception as e:
raise gr.Error(f"Pipeline error: {str(e)}")
return output
# Create the Gradio interface
with gr.Blocks(title="Ghibli Diffusion Image Transformer") as demo:
gr.Markdown("# Ghibli Diffusion Image Transformer")
gr.Markdown("Upload an image and transform it into Studio Ghibli style using nitrosocke/Ghibli-Diffusion!")
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Upload Image", type="pil")
prompt = gr.Textbox(label="Prompt", value="ghibli style")
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
num_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps (Higher = Better Quality, Slower)")
submit_btn = gr.Button("Transform")
with gr.Column():
output_img = gr.Image(label="Ghibli-Style Output")
# Connect the button to the function
submit_btn.click(
fn=ghibli_transform,
inputs=[input_img, prompt, strength, guidance, num_steps],
outputs=output_img
)
# Launch the Space with share=True for public link
demo.launch(share=True)