from math import gcd from functools import lru_cache import random from typing import Optional from ...environment import VerifiableEnvironment class CirculatingDecimalCounting_Environment(VerifiableEnvironment) : # Source : https://www.luogu.com.cn/problem/P1587 prompt_template = \ r"""Please count how many **distinct pure repeating decimals** (in terms of numeric value) exist in base ${K}$, that can be written as a reduced fraction $\frac{x}{y}$ where $1 \le x \le {N}$ and $1 \le y \le {M}$, with $x$ and $y$ being integers. A number is called a **pure repeating decimal** if and only if it can be written in the form of $$a.\dot{c_1} c_2 c_3 \dots c_{p - 1} \dot{c_p}$$, where $a$ is an integer, $p \ge 1$, and each $c_i$ ($1 \le i \le p$) is a digit in base ${K}$. Examples: - In base 10, $0.454545\ldots = 0.\dot{4}\dot{5}$ is a pure repeating decimal; it can be written as $\frac{5}{11}$ or $\frac{10}{22}$. - In contrast, $0.166666\ldots = 0.1\dot{6}$ is **not** pure repeating in base 10; it can be written as $\frac{1}{6}$. Note: - **Integers are considered pure repeating**, because their decimal part can be represented as a repeating sequence of 0s. - **Finite decimals with non-zero fractional parts** are **not** considered pure repeating. **Output Format:** Your final answer should be a single integer — the total number of such distinct pure repeating decimals.""" def __init__(self, wrong_format : float = -1.0, rewarding_strategy : str = "(min/max)^beta", rewarding_weight : float = 1.0, rewarding_beta : float = 10.0, **kwargs) : """ Initialize the CirculatingDecimalCounting_Environment instance. """ super().__init__(**kwargs) self.rewards = { "wrong_format" : wrong_format, "rewarding_strategy" : rewarding_strategy, "rewarding_weight" : rewarding_weight, "rewarding_beta" : rewarding_beta, } def _generate(self) -> None : assert "MAX_N" in self.parameter, "MAX_N is required in parameter" MAX_N = self.parameter["MAX_N"] assert MAX_N >= 1, "MAX_N should be greater than or equal to 1" N = self.parameter["N"] = random.randint(1, MAX_N) assert "MAX_M" in self.parameter, "MAX_M is required in parameter" MAX_M = self.parameter["MAX_M"] assert MAX_M >= 1, "MAX_M should be greater than or equal to 1" M = self.parameter["M"] = random.randint(1, MAX_M) assert "MAX_K" in self.parameter, "MAX_K is required in parameter" MAX_K = self.parameter["MAX_K"] assert MAX_K >= 2, "MAX_K should be greater than or equal to 2" K = self.parameter["K"] = random.randint(2, MAX_K) LIM = min(M, max(K, int(M ** 0.5) + 1)) g = [0] * (K + 1) for i in range(1, K + 1): g[i] = g[i - 1] + (1 if gcd(i, K) == 1 else 0) mu = [0] * (LIM + 1) is_comp = [False] * (LIM + 1) f = [0] * (LIM + 1) primes = [] mu[1] = 1 f[1] = 1 def G(x): return (x // K) * g[K] + g[x % K] for i in range(2, LIM + 1): if not is_comp[i]: primes.append(i) mu[i] = -1 for p in primes: ip = i * p if ip > LIM: break is_comp[ip] = True if i % p == 0: mu[ip] = 0 break else: mu[ip] = -mu[i] f[i] = f[i - 1] + mu[i] * (G(i) - G(i - 1)) @lru_cache(None) def F(x): if x <= LIM: return f[x] res = 1 l = 2 while l <= x: t = x // l r = x // t res -= F(t) * (G(r) - G(l - 1)) l = r + 1 return res ans = 0 l = 1 up = min(N, M) while l <= up: n_div = N // l m_div = M // l r = min(N // n_div, M // m_div) ans += n_div * G(m_div) * (F(r) - F(l - 1)) l = r + 1 assert ans > 0 self.parameter["reference_answer"] = ans def _prompt_generate(self) -> str : return self.prompt_template.replace(r"{K}", str(self.parameter["K"])) \ .replace(r"{N}", str(self.parameter["N"])) \ .replace(r"{M}", str(self.parameter["M"])) def _process(self, answer : Optional[str]) -> Optional[int] : if answer is not None : answer = answer.strip() try : int_answer = int(answer) return int_answer except ValueError : return None else : return None def scorer(self, output : str) -> float : processed_result = self.processor(output) if processed_result is not None : if processed_result <= 0 : return self.rewards["wrong_format"] if self.rewards["rewarding_strategy"] == "(min/max)^beta" : a, b = self.parameter["reference_answer"], processed_result return self.rewards["rewarding_weight"] * (((min(a, b) / max(a, b))) ** self.rewards["rewarding_beta"]) elif self.rewards["rewarding_strategy"] == "gold=answer" : return self.rewards["rewarding_weight"] * (processed_result == self.parameter["reference_answer"]) else : raise NotImplementedError("Unknown rewarding strategy: {}".format(self.rewards["rewarding_strategy"])) else : return self.rewards["wrong_format"]