File size: 6,666 Bytes
3bf8430
 
 
 
 
 
 
 
 
 
 
 
72f5a1d
 
 
9567311
 
 
 
 
3bf8430
 
 
 
 
 
 
 
72f5a1d
 
 
 
 
 
3bf8430
72f5a1d
3bf8430
72f5a1d
 
 
 
3bf8430
72f5a1d
3bf8430
 
 
 
72f5a1d
3bf8430
 
 
 
 
 
 
 
 
 
 
72f5a1d
 
 
3bf8430
72f5a1d
 
 
 
 
3bf8430
72f5a1d
3bf8430
72f5a1d
 
 
 
 
3bf8430
72f5a1d
3bf8430
72f5a1d
 
 
 
 
 
 
 
 
 
3bf8430
72f5a1d
3bf8430
72f5a1d
 
 
 
 
3bf8430
 
72f5a1d
 
3bf8430
 
 
 
72f5a1d
3bf8430
 
72f5a1d
3bf8430
 
72f5a1d
3bf8430
 
 
72f5a1d
3bf8430
72f5a1d
 
 
 
 
3bf8430
72f5a1d
3bf8430
72f5a1d
 
 
 
 
3bf8430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f5a1d
3bf8430
72f5a1d
 
 
 
 
3bf8430
72f5a1d
 
3bf8430
72f5a1d
3bf8430
72f5a1d
 
 
 
 
3bf8430
72f5a1d
3bf8430
 
72f5a1d
3bf8430
72f5a1d
 
 
 
 
3bf8430
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""
RLVE-Gym Environment Implementation.
"""

from typing import Optional, Tuple
import random

from openenv_core.env_server.interfaces import Environment

from models import RlveGymState, RlveGymAction, RlveGymObservation
from server.Gym.environment import VerifiableEnvironment
from server.Gym.parameter_controller import ParameterController
from server.Gym.environments import identifier2environment
from server.Gym.parameter_controllers import identifier2controller


class RlveGymEnvironment(Environment):
    """
    Wrap any verifiable environment from RLVE-Gym behind the OpenEnv ``Environment`` API.
    """

    def __init__(
        self,
        environment_identifier: str = "Multiplication",
        difficulty: int = 0,
        answer_markers: Optional[Tuple[str, str]] = None,
        initial_seed: int = 0,
    ):
        """Initialize the RLVE_Gym environment."""

        self._state = RlveGymState(
            seed=initial_seed,
            problem_input=None,
            num_samples=0,
            sum_accuracy=0,
        )

        self.environment_identifier = environment_identifier
        self.difficulty = difficulty
        self.answer_markers = answer_markers

        self.problem = None

    def reset(self) -> RlveGymObservation:
        """
        Reset the environment.

        Returns:
            problem_input: The generated problem input string (or None if generation failed)
            verifier_result: None
            success: Boolean indicating if the reset was successful
            message: Message indicating the result of the reset
        """
        if (self.environment_identifier not in identifier2environment) or (
            self.environment_identifier not in identifier2controller
        ):
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Invalid environment identifier.",
                reward=None,
            )
        if not (isinstance(self.difficulty, int) and self.difficulty >= 0):
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Difficulty should be a non-negative integer.",
                reward=None,
            )
        if not (isinstance(self._state.seed, int) and self._state.seed >= 0):
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Seed should be a non-negative integer.",
                reward=None,
            )

        try:
            problem: VerifiableEnvironment = identifier2environment[self.environment_identifier](
                answer_markers=self.answer_markers
            )
        except Exception as e:
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message=f"Failed to initialize environment: {e}",
                reward=None,
            )

        controller: ParameterController = identifier2controller[self.environment_identifier]()
        for _ in range(self.difficulty):
            controller.update()
        random.seed(self._state.seed)
        parameter = random.choice(controller.get_parameter_list())

        if problem.generator(seed=self._state.seed, parameter=parameter):
            self._state.problem_input = problem.prompt_generator()
            self.problem = problem
        else:
            self._state.problem_input = None
            self.problem = None

        self._state.seed += 1
        self._state.num_samples = self._state.sum_accuracy = 0

        if self.problem is not None:
            return RlveGymObservation(
                problem_input=self._state.problem_input,
                verifier_result=None,
                success=True,
                message="Problem generated successfully.",
                reward=None,
            )
        else:
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Problem generation failed. Please try decreasing difficulty or changing seed.",
                reward=None,
            )

    def step(self, action: RlveGymAction) -> RlveGymObservation:  # type: ignore[override]
        """
        Execute a step in the environment by verifying the model output.

        Args:
            action: RlveGymAction containing the output to verify

        Returns:
            problem_input: The problem input string from the current state
            verifier_result: Result of the verification containing accuracy and other metrics
            success: Boolean indicating if the step was successful
            message: Message indicating the result of the step
        """
        if self.problem is None:
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Problem not ready. Please reset the environment.",
                reward=None,
            )

        try:
            verifier_result = self.problem.verifier(action.output)
        except Exception as e:
            return RlveGymObservation(
                problem_input=self._state.problem_input,
                verifier_result=None,
                success=False,
                message=f"Verification failed with error: {e}",
                reward=None,
            )

        self._state.num_samples += 1
        self._state.sum_accuracy += verifier_result["accuracy"]

        return RlveGymObservation(
            problem_input=self._state.problem_input,
            verifier_result=verifier_result,
            success=True,
            message="Verification completed.",
            reward=verifier_result["reward"],
        )

    @property
    def state(self) -> RlveGymState:
        """
        Get the current environment state.

        Returns:
            seed: The current random seed value for problem generation
            problem_input: The generated problem input string (or None if generation failed)
            num_samples: Number of samples taken so far
            sum_accuracy: Sum of accuracies from verifications so far
        """
        return self._state