Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,011 Bytes
7f4c99b 989c44e 7f4c99b 51b7c7d 7f4c99b 989c44e 7f4c99b 06529b5 7f4c99b 06529b5 989c44e 06529b5 7f4c99b aa0cb15 7f4c99b 989c44e 7f4c99b b695f49 7f4c99b 989c44e 0fb3ed4 989c44e 0fb3ed4 989c44e 02b00c0 989c44e 02b00c0 989c44e 0fb3ed4 02b00c0 989c44e 02b00c0 989c44e 02b00c0 7f4c99b 989c44e 7f4c99b 989c44e 7f4c99b 75ba08b 7f4c99b 02b00c0 7f4c99b 989c44e 7f4c99b 75ba08b 7f4c99b 02b00c0 7f4c99b 02b00c0 7f4c99b 02b00c0 7f4c99b 2b7d18b 7f4c99b 02b00c0 7f4c99b 02b00c0 7f4c99b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import subprocess
import sys
import io
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
from diffusers import BitsAndBytesConfig as DiffBitsAndBytesConfig
import requests
from PIL import Image
import json
import base64
from huggingface_hub import InferenceClient
subprocess.check_call([sys.executable, "-m", "pip", "install", "spaces==0.43.0"])
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
hf_client = InferenceClient(
api_key=os.environ.get("HF_TOKEN"),
)
VLM_MODEL = "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"
SYSTEM_PROMPT_TEXT_ONLY = """You are an expert prompt engineer for FLUX.2 by Black Forest Labs. Rewrite user prompts to be more descriptive while strictly preserving their core subject and intent.
Guidelines:
1. Structure: Keep structured inputs structured (enhance within fields). Convert natural language to detailed paragraphs.
2. Details: Add concrete visual specifics - form, scale, textures, materials, lighting (quality, direction, color), shadows, spatial relationships, and environmental context.
3. Text in Images: Put ALL text in quotation marks, matching the prompt's language. Always provide explicit quoted text for objects that would contain text in reality (signs, labels, screens, etc.) - without it, the model generates gibberish.
Output only the revised prompt and nothing else."""
SYSTEM_PROMPT_WITH_IMAGES = """You are FLUX.2 by Black Forest Labs, an image-editing expert. You convert editing requests into one concise instruction (50-80 words, ~30 for brief requests).
Rules:
- Single instruction only, no commentary
- Use clear, analytical language (avoid "whimsical," "cascading," etc.)
- Specify what changes AND what stays the same (face, lighting, composition)
- Reference actual image elements
- Turn negatives into positives ("don't change X" → "keep X")
- Make abstractions concrete ("futuristic" → "glowing cyan neon, metallic panels")
- Keep content PG-13
Output only the final instruction in plain text and nothing else."""
def remote_text_encoder(prompts):
from gradio_client import Client
client = Client("multimodalart/mistral-text-encoder")
result = client.predict(
prompt=prompts,
api_name="/encode_text"
)
# Load returns a tensor, usually on CPU by default
prompt_embeds = torch.load(result[0])
return prompt_embeds
# Load model
repo_id = "black-forest-labs/FLUX.2-dev"
dit = Flux2Transformer2DModel.from_pretrained(
repo_id,
subfolder="transformer",
torch_dtype=torch.bfloat16
)
pipe = Flux2Pipeline.from_pretrained(
repo_id,
text_encoder=None,
transformer=dit,
torch_dtype=torch.bfloat16
)
pipe.to(device)
# Pull pre-compiled Flux2 Transformer blocks from HF hub
spaces.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/FLUX.2", variant="fa3")
def image_to_data_uri(img):
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_str}"
def upsample_prompt_logic(prompt, image_list):
try:
if image_list and len(image_list) > 0:
# Image + Text Editing Mode
system_content = SYSTEM_PROMPT_WITH_IMAGES
# Construct user message with text and images
user_content = [{"type": "text", "text": prompt}]
for img in image_list:
data_uri = image_to_data_uri(img)
user_content.append({
"type": "image_url",
"image_url": {"url": data_uri}
})
messages = [
{"role": "system", "content": system_content},
{"role": "user", "content": user_content}
]
else:
# Text Only Mode
system_content = SYSTEM_PROMPT_TEXT_ONLY
messages = [
{"role": "system", "content": system_content},
{"role": "user", "content": prompt}
]
completion = hf_client.chat.completions.create(
model=VLM_MODEL,
messages=messages,
max_tokens=1024
)
return completion.choices[0].message.content
except Exception as e:
print(f"Upsampling failed: {e}")
return prompt
def update_dimensions_from_image(image_list):
"""Update width/height sliders based on uploaded image aspect ratio.
Keeps one side at 1024 and scales the other proportionally, with both sides as multiples of 8."""
if image_list is None or len(image_list) == 0:
return 1024, 1024 # Default dimensions
# Get the first image to determine dimensions
img = image_list[0][0] # Gallery returns list of tuples (image, caption)
img_width, img_height = img.size
aspect_ratio = img_width / img_height
if aspect_ratio >= 1: # Landscape or square
new_width = 1024
new_height = int(1024 / aspect_ratio)
else: # Portrait
new_height = 1024
new_width = int(1024 * aspect_ratio)
# Round to nearest multiple of 8
new_width = round(new_width / 8) * 8
new_height = round(new_height / 8) * 8
# Ensure within valid range (minimum 256, maximum 1024)
new_width = max(256, min(1024, new_width))
new_height = max(256, min(1024, new_height))
return new_width, new_height
# Updated duration function to match generate_image arguments (including progress)
def get_duration(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
num_images = 0 if image_list is None else len(image_list)
step_duration = 1 + 0.8 * num_images
return max(65, num_inference_steps * step_duration + 10)
@spaces.GPU(duration=get_duration)
def generate_image(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
# Move embeddings to GPU only when inside the GPU decorated function
prompt_embeds = prompt_embeds.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
pipe_kwargs = {
"prompt_embeds": prompt_embeds,
"image": image_list,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": generator,
"width": width,
"height": height,
}
# Progress bar for the actual generation steps
if progress:
progress(0, desc="Starting generation...")
image = pipe(**pipe_kwargs).images[0]
return image
def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, prompt_upsampling=False, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Prepare image list (convert None or empty gallery to None)
image_list = None
if input_images is not None and len(input_images) > 0:
image_list = []
for item in input_images:
image_list.append(item[0])
# 1. Upsampling (Network bound - No GPU needed)
final_prompt = prompt
if prompt_upsampling:
progress(0.05, desc="Upsampling prompt...")
final_prompt = upsample_prompt_logic(prompt, image_list)
print(f"Original Prompt: {prompt}")
print(f"Upsampled Prompt: {final_prompt}")
# 2. Text Encoding (Network bound - No GPU needed)
progress(0.1, desc="Encoding prompt...")
# This returns CPU tensors
prompt_embeds = remote_text_encoder(final_prompt)
# 3. Image Generation (GPU bound)
progress(0.3, desc="Waiting for GPU...")
image = generate_image(
prompt_embeds,
image_list,
width,
height,
num_inference_steps,
guidance_scale,
seed,
progress
)
return image, seed
examples = [
["Create a vase on a table in living room, the color of the vase is a gradient of color, starting with #02eb3c color and finishing with #edfa3c. The flowers inside the vase have the color #ff0088"],
["Photorealistic infographic showing the complete Berlin TV Tower (Fernsehturm) from ground base to antenna tip, full vertical view with entire structure visible including concrete shaft, metallic sphere, and antenna spire. Slight upward perspective angle looking up toward the iconic sphere, perfectly centered on clean white background. Left side labels with thin horizontal connector lines: the text '368m' in extra large bold dark grey numerals (#2D3748) positioned at exactly the antenna tip with 'TOTAL HEIGHT' in small caps below. The text '207m' in extra large bold with 'TELECAFÉ' in small caps below, with connector line touching the sphere precisely at the window level. Right side label with horizontal connector line touching the sphere's equator: the text '32m' in extra large bold dark grey numerals with 'SPHERE DIAMETER' in small caps below. Bottom section arranged in three balanced columns: Left - Large text '986' in extra bold dark grey with 'STEPS' in caps below. Center - 'BERLIN TV TOWER' in bold caps with 'FERNSEHTURM' in lighter weight below. Right - 'INAUGURATED' in bold caps with 'OCTOBER 3, 1969' below. All typography in modern sans-serif font (such as Inter or Helvetica), color #2D3748, clean minimal technical diagram style. Horizontal connector lines are thin, precise, and clearly visible, touching the tower structure at exact corresponding measurement points. Professional architectural elevation drawing aesthetic with dynamic low angle perspective creating sense of height and grandeur, poster-ready infographic design with perfect visual hierarchy."],
["Soaking wet capybara taking shelter under a banana leaf in the rainy jungle, close up photo"],
["A kawaii die-cut sticker of a chubby orange cat, featuring big sparkly eyes and a happy smile with paws raised in greeting and a heart-shaped pink nose. The design should have smooth rounded lines with black outlines and soft gradient shading with pink cheeks."],
]
examples_images = [
# ["Replace the top of the person from image 1 with the one from image 2", ["person1.webp", "woman2.webp"]],
["The person from image 1 is petting the cat from image 2, the bird from image 3 is next to them", ["woman1.webp", "cat_window.webp", "bird.webp"]]
]
css="""
#col-container {
margin: 0 auto;
max-width: 1200px;
}
.gallery-container img{
object-fit: contain;
}
"""
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.2 [dev]
FLUX.2 [dev] is a 32B model rectified flow capable of generating, editing and combining images based on text instructions model [[model](https://huggingface.co/black-forest-labs/FLUX.2-dev)], [[blog](https://bfl.ai/blog/flux-2)]
""")
with gr.Row():
with gr.Column():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
scale=3
)
run_button = gr.Button("Run", scale=1)
with gr.Accordion("Input image(s) (optional)", open=True):
input_images = gr.Gallery(
label="Input Image(s)",
type="pil",
columns=3,
rows=1,
)
with gr.Accordion("Advanced Settings", open=False):
prompt_upsampling = gr.Checkbox(
label="Prompt Upsampling",
value=True,
info="Automatically enhance the prompt using a VLM"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=4,
)
with gr.Column():
result = gr.Image(label="Result", show_label=False)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples=True,
cache_mode="lazy"
)
gr.Examples(
examples=examples_images,
fn=infer,
inputs=[prompt, input_images],
outputs=[result, seed],
cache_examples=True,
cache_mode="lazy"
)
# Auto-update dimensions when images are uploaded
input_images.upload(
fn=update_dimensions_from_image,
inputs=[input_images],
outputs=[width, height]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, input_images, seed, randomize_seed, width, height, num_inference_steps, guidance_scale, prompt_upsampling],
outputs=[result, seed]
)
demo.launch(css=css) |