Spaces:
Running
Running
File size: 8,567 Bytes
9c5969f 4a434ae 9c5969f 4a434ae 9c5969f 4a434ae 9c5969f 4a434ae 9c5969f 4a434ae 9c5969f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import torch
import nemo.collections.asr as nemo_asr
from pydub import AudioSegment
import os
import logging
from typing import Optional
import threading
# Konfiguracja logowania
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TimeoutException(Exception):
"""Wyj膮tek dla timeoutu transkrypcji."""
pass
class TranscriptionService:
"""Klasa do zarz膮dzania modelami ASR na r贸偶nych urz膮dzeniach."""
def __init__(self):
# Usuni臋cie wst臋pnego 艂adowania. Modele b臋d膮 艂adowane dynamicznie
self.models = {
'mps': None,
'cuda': None,
'cpu': None
}
self.model_name = "nvidia/parakeet-tdt-0.6b-v3"
self.timeout_seconds = 300 # 5 minut timeout
self.chunk_length_minutes = 5 # Dziel pliki d艂u偶sze ni偶 5 minut
def _get_optimal_device(self, audio_length_minutes: float) -> str:
"""
Wybiera optymalne urz膮dzenie na podstawie d艂ugo艣ci audio i dost臋pno艣ci sprz臋tu.
"""
if torch.cuda.is_available():
logger.info("U偶ywam CUDA (GPU) - najlepsza wydajno艣膰")
return "cuda"
if torch.backends.mps.is_available() and audio_length_minutes <= 8:
logger.info(f"Plik kr贸tki ({audio_length_minutes:.2f} min) - u偶ywam MPS")
return "mps"
if torch.backends.mps.is_available() and audio_length_minutes > 8:
logger.info(f"Plik d艂ugi ({audio_length_minutes:.2f} min) - u偶ywam CPU zamiast MPS")
else:
logger.info("Brak GPU/MPS - u偶ywam CPU")
return "cpu"
def _load_model(self, device: str) -> nemo_asr.models.ASRModel:
"""
艁aduje model na okre艣lonym urz膮dzeniu (z cache'owaniem).
"""
if self.models[device] is None:
logger.info(f"艁adowanie modelu na {device.upper()}...")
try:
model = nemo_asr.models.ASRModel.from_pretrained(
model_name=self.model_name
)
self.models[device] = model.to(device)
logger.info("Model za艂adowany pomy艣lnie")
except Exception as e:
logger.error(f"B艂膮d 艂adowania modelu na {device}: {e}")
raise
return self.models[device]
def _split_audio(self, audio_file_path: str, chunk_length_ms: int) -> list:
"""
Dzieli d艂ugi plik audio na mniejsze fragmenty.
"""
audio = AudioSegment.from_file(audio_file_path)
chunks = []
for i, chunk in enumerate(audio[::chunk_length_ms]):
chunk_path = f"/tmp/temp_chunk_{i}.wav"
chunk.export(chunk_path, format="wav")
chunks.append(chunk_path)
return chunks
def _transcribe_with_timeout(self, audio_file_path: str, device: str) -> str:
"""
Wykonuje transkrypcj臋 z timeoutem.
"""
# 艁adowanie modelu przeniesione tutaj
model = self._load_model(device)
result = {"text": None, "error": None}
def transcribe_worker():
try:
transcriptions = model.transcribe([audio_file_path])
if transcriptions and len(transcriptions) > 0:
result["text"] = transcriptions[0].text
else:
result["error"] = "Model nie zwr贸ci艂 偶adnej transkrypcji."
except Exception as e:
result["error"] = f"B艂膮d transkrypcji: {str(e)}"
thread = threading.Thread(target=transcribe_worker)
thread.start()
thread.join(timeout=self.timeout_seconds)
if thread.is_alive():
raise TimeoutException(f"Transkrypcja przekroczy艂a limit {self.timeout_seconds} sekund")
if result["error"]:
raise Exception(result["error"])
return result["text"]
def transcribe(self, audio_file_path: str, progress=None) -> str:
"""
G艂贸wna funkcja transkrypcji.
"""
if not audio_file_path or not os.path.exists(audio_file_path):
return "B艂膮d: Nie wybrano pliku audio lub plik nie istnieje."
temp_files = []
try:
logger.info(f"Analizuj臋 plik: {os.path.basename(audio_file_path)}")
audio = AudioSegment.from_file(audio_file_path)
length_minutes = len(audio) / (1000 * 60)
logger.info(f"D艂ugo艣膰 pliku: {length_minutes:.2f} minut")
device = self._get_optimal_device(length_minutes)
if length_minutes > self.chunk_length_minutes:
if progress:
progress(0.1, desc="Dziel臋 plik na fragmenty...")
logger.info(f"Dziel臋 plik na fragmenty po {self.chunk_length_minutes} minut")
chunk_length_ms = self.chunk_length_minutes * 60 * 1000
chunks = self._split_audio(audio_file_path, chunk_length_ms)
temp_files.extend(chunks)
logger.info(f"Transkrypcja {len(chunks)} fragment贸w...")
all_transcriptions = []
for i, chunk_path in enumerate(chunks):
if progress:
progress_value = 0.1 + (0.8 * (i + 1) / len(chunks))
progress(progress_value, desc=f"Transkrypcja fragmentu {i+1}/{len(chunks)}...")
logger.info(f"Transkrypcja fragmentu {i+1}/{len(chunks)}...")
chunk_text = self._transcribe_with_timeout(chunk_path, device)
all_transcriptions.append(chunk_text)
logger.info(f"Fragment {i+1} przetworzony")
result_text = " ".join(all_transcriptions)
else:
if progress:
progress(0.5, desc="Rozpoczynam transkrypcj臋...")
logger.info("Rozpoczynam transkrypcj臋...")
result_text = self._transcribe_with_timeout(audio_file_path, device)
logger.info("Transkrypcja zako艅czona pomy艣lnie")
return result_text
except FileNotFoundError:
error_msg = f"B艂膮d: Plik {audio_file_path} nie zosta艂 znaleziony."
logger.error(error_msg)
return error_msg
except TimeoutException as e:
error_msg = f"Timeout: {str(e)}"
logger.error(error_msg)
return error_msg
except Exception as e:
error_msg = f"Wyst膮pi艂 b艂膮d podczas transkrypcji: {str(e)}"
logger.error(error_msg)
return error_msg
finally:
for temp_file in temp_files:
try:
os.remove(temp_file)
except:
pass
# Globalna instancja serwisu
transcription_service = TranscriptionService()
def transcribe_audio_wrapper(audio_file_path: str, progress=gr.Progress()) -> str:
"""Wrapper dla Gradio - izoluje logik臋 od interfejsu."""
return transcription_service.transcribe(audio_file_path, progress)
def create_interface() -> gr.Interface:
"""Tworzy i konfiguruje interfejs Gradio."""
return gr.Interface(
fn=transcribe_audio_wrapper,
inputs=gr.Audio(
type="filepath",
label="Wybierz plik audio",
format="wav" # Opcjonalnie: wymu艣 konkretny format
),
outputs=gr.Textbox(
lines=10,
label="Wynik transkrypcji",
placeholder="Tutaj pojawi si臋 transkrypcja..."
),
title="馃帳 Transkrypcja mowy na tekst",
description="""
Wybierz plik audio, a model NVIDIA Parakeet wykona transkrypcj臋.
**Obs艂ugiwane formaty:** WAV, MP3, FLAC, M4A i inne
**Optymalizacja urz膮dzenia:** Automatyczny wyb贸r GPU/CPU
""",
examples=None,
cache_examples=False,
flagging_options=None,
allow_flagging="never"
)
if __name__ == "__main__":
logger.info("=== Informacje o systemie ===")
logger.info(f"CUDA dost臋pne: {torch.cuda.is_available()}")
logger.info(f"MPS dost臋pne: {torch.backends.mps.is_available()}")
if torch.cuda.is_available():
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
interface = create_interface()
interface.launch(
server_name="0.0.0.0", # Zmieniono z 127.0.0.1
server_port=7860,
share=False,
debug=False,
show_error=True
) |