Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
from diffusers import ZImagePipeline
|
| 5 |
import os
|
| 6 |
from pathlib import Path
|
| 7 |
|
| 8 |
-
# Load the
|
| 9 |
print("Loading Z-Image Turbo model...")
|
| 10 |
print("This may take a few minutes on first run while the model downloads...")
|
| 11 |
|
|
|
|
| 12 |
# Load the pipeline with optimal settings
|
| 13 |
pipe = ZImagePipeline.from_pretrained(
|
| 14 |
"Tongyi-MAI/Z-Image-Turbo",
|
|
@@ -23,27 +24,21 @@ print(f"Model loaded on {device}")
|
|
| 23 |
|
| 24 |
print("Model loaded successfully!")
|
| 25 |
|
| 26 |
-
# Store the current model state
|
| 27 |
-
current_model = "base"
|
| 28 |
-
lora_loaded = False
|
| 29 |
-
|
| 30 |
@spaces.GPU()
|
| 31 |
def generate_image(
|
| 32 |
prompt,
|
| 33 |
-
model_choice,
|
| 34 |
progress=gr.Progress(track_tqdm=True)
|
| 35 |
):
|
| 36 |
"""
|
| 37 |
-
Generate an image using Z-Image Turbo model
|
| 38 |
|
| 39 |
Args:
|
| 40 |
prompt: Text description of the desired image
|
| 41 |
-
model_choice: Either "Base Model" or "Classic Painting LoRA"
|
| 42 |
|
| 43 |
Returns:
|
| 44 |
Generated PIL Image
|
| 45 |
"""
|
| 46 |
-
global pipe
|
| 47 |
|
| 48 |
if pipe is None:
|
| 49 |
raise gr.Error("Model failed to load on startup. Please restart the application.")
|
|
@@ -54,69 +49,22 @@ def generate_image(
|
|
| 54 |
# Determine device
|
| 55 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
try:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
lora_loaded = True
|
| 71 |
-
|
| 72 |
-
# Set LoRA adapter
|
| 73 |
-
pipe.set_adapters(["classic_painting"], adapter_weights=[0.8])
|
| 74 |
-
current_model = "lora"
|
| 75 |
-
progress(0.15, desc="LoRA loaded, generating image...")
|
| 76 |
-
|
| 77 |
-
# Generate with LoRA settings
|
| 78 |
-
generator = torch.Generator(device).manual_seed(42)
|
| 79 |
-
result = pipe(
|
| 80 |
-
prompt=prompt,
|
| 81 |
-
negative_prompt=None,
|
| 82 |
-
height=1024,
|
| 83 |
-
width=1024,
|
| 84 |
-
num_inference_steps=9,
|
| 85 |
-
guidance_scale=0.0,
|
| 86 |
-
generator=generator,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
elif model_choice == "Base Model" and current_model != "base":
|
| 90 |
-
# Disable LoRA
|
| 91 |
-
pipe.disable_lora()
|
| 92 |
-
current_model = "base"
|
| 93 |
-
progress(0.15, desc="Generating image...")
|
| 94 |
-
|
| 95 |
-
# Generate with base model settings
|
| 96 |
-
generator = torch.Generator(device).manual_seed(42)
|
| 97 |
-
result = pipe(
|
| 98 |
-
prompt=prompt,
|
| 99 |
-
negative_prompt=None,
|
| 100 |
-
height=1024,
|
| 101 |
-
width=1024,
|
| 102 |
-
num_inference_steps=9,
|
| 103 |
-
guidance_scale=0.0,
|
| 104 |
-
generator=generator,
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
else:
|
| 108 |
-
# Model already loaded, just generate
|
| 109 |
-
progress(0.15, desc="Generating image...")
|
| 110 |
-
generator = torch.Generator(device).manual_seed(42)
|
| 111 |
-
result = pipe(
|
| 112 |
-
prompt=prompt,
|
| 113 |
-
negative_prompt=None,
|
| 114 |
-
height=1024,
|
| 115 |
-
width=1024,
|
| 116 |
-
num_inference_steps=9,
|
| 117 |
-
guidance_scale=0.0,
|
| 118 |
-
generator=generator,
|
| 119 |
-
)
|
| 120 |
|
| 121 |
image = result.images[0]
|
| 122 |
progress(1.0, desc="Complete!")
|
|
@@ -182,19 +130,6 @@ apple_css = """
|
|
| 182 |
box-shadow: 0 2px 12px rgba(0, 0, 0, 0.08);
|
| 183 |
}
|
| 184 |
|
| 185 |
-
/* Model Selector */
|
| 186 |
-
.model-selector {
|
| 187 |
-
margin-bottom: 24px;
|
| 188 |
-
}
|
| 189 |
-
|
| 190 |
-
.model-selector label {
|
| 191 |
-
font-size: 15px !important;
|
| 192 |
-
font-weight: 500 !important;
|
| 193 |
-
color: #1d1d1f !important;
|
| 194 |
-
margin-bottom: 8px !important;
|
| 195 |
-
display: block !important;
|
| 196 |
-
}
|
| 197 |
-
|
| 198 |
/* Textbox */
|
| 199 |
textarea {
|
| 200 |
font-size: 17px !important;
|
|
@@ -296,10 +231,6 @@ button.primary:active {
|
|
| 296 |
color: #86868b !important;
|
| 297 |
}
|
| 298 |
|
| 299 |
-
.dark .model-selector label {
|
| 300 |
-
color: #f5f5f7 !important;
|
| 301 |
-
}
|
| 302 |
-
|
| 303 |
/* Responsive */
|
| 304 |
@media (max-width: 734px) {
|
| 305 |
.main-title {
|
|
@@ -345,15 +276,6 @@ with gr.Blocks(
|
|
| 345 |
|
| 346 |
# Input Section
|
| 347 |
with gr.Column(elem_classes="input-section"):
|
| 348 |
-
# Model Selector
|
| 349 |
-
with gr.Group(elem_classes="model-selector"):
|
| 350 |
-
model_choice = gr.Radio(
|
| 351 |
-
choices=["Base Model", "Classic Painting LoRA"],
|
| 352 |
-
value="Base Model",
|
| 353 |
-
label="Select Model",
|
| 354 |
-
info="Choose between the base Z-Image Turbo model or the Classic Painting LoRA variant"
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
prompt = gr.Textbox(
|
| 358 |
placeholder="Describe the image you want to create...",
|
| 359 |
lines=3,
|
|
@@ -384,21 +306,20 @@ with gr.Blocks(
|
|
| 384 |
gr.HTML("""
|
| 385 |
<div class="footer-text">
|
| 386 |
<p>Powered by Z-Image Turbo from Tongyi-MAI</p>
|
| 387 |
-
<p>Classic Painting LoRA by renderartist</p>
|
| 388 |
</div>
|
| 389 |
""")
|
| 390 |
|
| 391 |
# Event handlers
|
| 392 |
generate_btn.click(
|
| 393 |
fn=generate_image,
|
| 394 |
-
inputs=
|
| 395 |
outputs=output_image,
|
| 396 |
api_visibility="public"
|
| 397 |
)
|
| 398 |
|
| 399 |
prompt.submit(
|
| 400 |
fn=generate_image,
|
| 401 |
-
inputs=
|
| 402 |
outputs=output_image,
|
| 403 |
api_visibility="public"
|
| 404 |
)
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from diffusers import ZImagePipeline
|
| 5 |
import os
|
| 6 |
from pathlib import Path
|
| 7 |
|
| 8 |
+
# Load the model directly at startup
|
| 9 |
print("Loading Z-Image Turbo model...")
|
| 10 |
print("This may take a few minutes on first run while the model downloads...")
|
| 11 |
|
| 12 |
+
|
| 13 |
# Load the pipeline with optimal settings
|
| 14 |
pipe = ZImagePipeline.from_pretrained(
|
| 15 |
"Tongyi-MAI/Z-Image-Turbo",
|
|
|
|
| 24 |
|
| 25 |
print("Model loaded successfully!")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
@spaces.GPU()
|
| 28 |
def generate_image(
|
| 29 |
prompt,
|
|
|
|
| 30 |
progress=gr.Progress(track_tqdm=True)
|
| 31 |
):
|
| 32 |
"""
|
| 33 |
+
Generate an image using Z-Image Turbo model.
|
| 34 |
|
| 35 |
Args:
|
| 36 |
prompt: Text description of the desired image
|
|
|
|
| 37 |
|
| 38 |
Returns:
|
| 39 |
Generated PIL Image
|
| 40 |
"""
|
| 41 |
+
global pipe
|
| 42 |
|
| 43 |
if pipe is None:
|
| 44 |
raise gr.Error("Model failed to load on startup. Please restart the application.")
|
|
|
|
| 49 |
# Determine device
|
| 50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
|
| 52 |
+
# Set random seed for reproducibility
|
| 53 |
+
generator = torch.Generator(device).manual_seed(42)
|
| 54 |
+
|
| 55 |
+
# Generate the image with optimal settings
|
| 56 |
+
progress(0.1, desc="Generating image...")
|
| 57 |
|
| 58 |
try:
|
| 59 |
+
result = pipe(
|
| 60 |
+
prompt=prompt,
|
| 61 |
+
negative_prompt=None,
|
| 62 |
+
height=1024,
|
| 63 |
+
width=1024,
|
| 64 |
+
num_inference_steps=9,
|
| 65 |
+
guidance_scale=0.0,
|
| 66 |
+
generator=generator,
|
| 67 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
image = result.images[0]
|
| 70 |
progress(1.0, desc="Complete!")
|
|
|
|
| 130 |
box-shadow: 0 2px 12px rgba(0, 0, 0, 0.08);
|
| 131 |
}
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
/* Textbox */
|
| 134 |
textarea {
|
| 135 |
font-size: 17px !important;
|
|
|
|
| 231 |
color: #86868b !important;
|
| 232 |
}
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
/* Responsive */
|
| 235 |
@media (max-width: 734px) {
|
| 236 |
.main-title {
|
|
|
|
| 276 |
|
| 277 |
# Input Section
|
| 278 |
with gr.Column(elem_classes="input-section"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
prompt = gr.Textbox(
|
| 280 |
placeholder="Describe the image you want to create...",
|
| 281 |
lines=3,
|
|
|
|
| 306 |
gr.HTML("""
|
| 307 |
<div class="footer-text">
|
| 308 |
<p>Powered by Z-Image Turbo from Tongyi-MAI</p>
|
|
|
|
| 309 |
</div>
|
| 310 |
""")
|
| 311 |
|
| 312 |
# Event handlers
|
| 313 |
generate_btn.click(
|
| 314 |
fn=generate_image,
|
| 315 |
+
inputs=prompt,
|
| 316 |
outputs=output_image,
|
| 317 |
api_visibility="public"
|
| 318 |
)
|
| 319 |
|
| 320 |
prompt.submit(
|
| 321 |
fn=generate_image,
|
| 322 |
+
inputs=prompt,
|
| 323 |
outputs=output_image,
|
| 324 |
api_visibility="public"
|
| 325 |
)
|