VibeVoice-Realtime-0.5B / vibevoice /processor /vibevoice_streaming_processor.py
akhaliq's picture
akhaliq HF Staff
Upload 37 files
26e0cd3 verified
import math
import warnings
from typing import List, Optional, Union, Dict, Any, Tuple
import os
import re
import numpy as np
import torch
from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType, logging
from .vibevoice_tokenizer_processor import AudioNormalizer
logger = logging.get_logger(__name__)
class VibeVoiceStreamingProcessor:
r"""
Constructs a VibeVoice Streaming processor which wraps a VibeVoice tokenizer and audio processor into a single processor.
Args:
tokenizer (`VibeVoiceTextTokenizer` or `VibeVoiceTextTokenizerFast`):
The tokenizer for text processing.
audio_processor (`VibeVoiceTokenizerProcessor`):
The audio processor for speech processing.
speech_tok_compress_ratio (`int`, *optional*, defaults to 3200):
The compression ratio for speech tokenization.
db_normalize (`bool`, *optional*, defaults to True):
Whether to apply decibel normalization to audio inputs.
"""
def __init__(self, tokenizer=None, audio_processor=None, speech_tok_compress_ratio=3200, db_normalize=True, **kwargs):
self.tokenizer = tokenizer
self.audio_processor = audio_processor
self.speech_tok_compress_ratio = speech_tok_compress_ratio
self.db_normalize = db_normalize
self.audio_normalizer = AudioNormalizer() if db_normalize else None
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""
Instantiate a VibeVoiceStreamingProcessor from a pretrained VibeVoice Streaming processor.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model
- a path to a *directory* containing processor config
Returns:
[`VibeVoiceStreamingProcessor`]: The processor object instantiated from pretrained model.
"""
import os
import json
from transformers.utils import cached_file
from .vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor
from vibevoice.modular.modular_vibevoice_text_tokenizer import (
VibeVoiceTextTokenizer,
VibeVoiceTextTokenizerFast
)
# Try to load from local path first, then from HF hub
config_path = os.path.join(pretrained_model_name_or_path, "preprocessor_config.json")
config = None
if os.path.exists(config_path):
# Local path exists
with open(config_path, 'r') as f:
config = json.load(f)
else:
# Try to load from HF hub
try:
config_file = cached_file(
pretrained_model_name_or_path,
"preprocessor_config.json",
**kwargs
)
with open(config_file, 'r') as f:
config = json.load(f)
except Exception as e:
logger.warning(f"Could not load preprocessor_config.json from {pretrained_model_name_or_path}: {e}")
logger.warning("Using default configuration")
config = {
"speech_tok_compress_ratio": 3200,
"db_normalize": True,
}
# Extract main processor parameters
speech_tok_compress_ratio = config.get("speech_tok_compress_ratio", 3200)
db_normalize = config.get("db_normalize", True)
# Load tokenizer - try from model path first, then fallback to Qwen
language_model_pretrained_name = config.get("language_model_pretrained_name", None) or kwargs.pop("language_model_pretrained_name", "Qwen/Qwen2.5-1.5B")
logger.info(f"Loading tokenizer from {language_model_pretrained_name}")
if 'qwen' in language_model_pretrained_name.lower():
tokenizer = VibeVoiceTextTokenizerFast.from_pretrained(
language_model_pretrained_name,
**kwargs
)
else:
raise ValueError(f"Unsupported tokenizer type for {language_model_pretrained_name}. Supported types: Qwen, Llama, Gemma.")
# Load audio processor
if "audio_processor" in config:
# Create audio processor from config
audio_config = config["audio_processor"]
audio_processor = VibeVoiceTokenizerProcessor(
sampling_rate=audio_config.get("sampling_rate", 24000),
normalize_audio=audio_config.get("normalize_audio", True),
target_dB_FS=audio_config.get("target_dB_FS", -25),
eps=audio_config.get("eps", 1e-6),
)
else:
# Create default audio processor
audio_processor = VibeVoiceTokenizerProcessor()
# Create and return the processor
return cls(
tokenizer=tokenizer,
audio_processor=audio_processor,
speech_tok_compress_ratio=speech_tok_compress_ratio,
db_normalize=db_normalize,
)
def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs):
"""
Save a processor to a directory, so that it can be re-loaded using the
[`~VibeVoiceStreamingProcessor.from_pretrained`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the processor will be saved.
"""
import os
import json
os.makedirs(save_directory, exist_ok=True)
# Save processor configuration
processor_config = {
"processor_class": "VibeVoiceStreamingProcessor",
"speech_tok_compress_ratio": self.speech_tok_compress_ratio,
"db_normalize": self.db_normalize,
"audio_processor": {
"feature_extractor_type": "VibeVoiceTokenizerProcessor",
"sampling_rate": getattr(self.audio_processor, 'sampling_rate', 24000),
"normalize_audio": getattr(self.audio_processor, 'normalize_audio', True),
"target_dB_FS": getattr(self.audio_processor, 'target_dB_FS', -25),
"eps": getattr(self.audio_processor, 'eps', 1e-6),
}
}
config_path = os.path.join(save_directory, "preprocessor_config.json")
with open(config_path, 'w') as f:
json.dump(processor_config, f, indent=2)
logger.info(f"Processor configuration saved in {config_path}")
def __call__(self) -> BatchEncoding:
"""
Note:
This method is intentionally not implemented in the streaming processor.
Use `process_input_with_cached_prompt` for streaming use cases.
"""
raise NotImplementedError(
"VibeVoiceStreamingProcessor.__call__ is not implemented. "
"Use process_input_with_cached_prompt for streaming inputs."
)
def process_input_with_cached_prompt(
self,
text: Optional[str] = None,
cached_prompt: Optional[Dict[str, Any]] = None,
padding: Union[bool, str, PaddingStrategy] = True,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to process one text script based on cached prompt. The function currently only supports single examples.
Args:
text (`str`):
The input text to process.
cached_prompt (`Dict[str, Any]`, *optional*):
The cached prompt to use for processing. It contains the kv cache of the voice prompt.
padding (`bool`, `str` or `PaddingStrategy`, defaults to `True`):
Whether to pad sequences to the same length
truncation (`bool`, `str` or `TruncationStrategy`, defaults to `False`):
Whether to truncate sequences
max_length (`int`, *optional*):
Maximum length of the returned sequences
return_tensors (`str` or `TensorType`, *optional*):
If set, will return tensors of a particular framework
return_attention_mask (`bool`, defaults to `True`):
Whether to return the attention mask
Returns:
`BatchEncoding`: A BatchEncoding with the following fields:
- **input_ids** -- List of token id sequences or tensor
- **attention_mask** -- List of attention masks or tensor
- **tts_lm_input_ids** -- List of token id sequences or tensor used for TTS LM
- **tts_lm_attention_mask** -- List of attention masks or tensor used for TTS LM
- **tts_text_ids** -- List of token id sequences or tensor for TTS text input
- **speech_tensors** -- Padded speech inputs (if voice_samples provided)
- **speech_masks** -- Speech masks (if voice_samples provided)
- **speech_input_mask** -- Boolean masks indicating speech token positions
"""
# Only support single example
texts = [text]
cached_prompts = [cached_prompt]
is_batched = False
# Process each input
all_encodings = []
for text_input, cached_prompt_input in zip(texts, cached_prompts):
script_tokens = self.tokenizer.encode(text_input.strip() + "\n", add_special_tokens=False)
input_id_length = cached_prompt_input['lm']['last_hidden_state'].size(1)
tts_lm_input_id_length = cached_prompt_input['tts_lm']['last_hidden_state'].size(1)
# psudo input ids and masks
input_ids = [self.tokenizer.pad_id] * input_id_length
tts_lm_input_ids = [self.tokenizer.pad_id] * tts_lm_input_id_length
speech_input_mask = [False] * tts_lm_input_id_length
encoding = {
"input_ids": input_ids,
"tts_lm_input_ids": tts_lm_input_ids,
"tts_text_ids": script_tokens,
"speech_inputs": None,
"speech_input_mask": speech_input_mask,
}
all_encodings.append(encoding)
# Combine batch
batch_encoding = self._batch_encode(
all_encodings,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
)
return batch_encoding
def _batch_encode(
self,
encodings: List[Dict[str, Any]],
padding: Union[bool, str, PaddingStrategy] = True,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: bool = True,
) -> BatchEncoding:
"""Combine multiple encodings into a batch with padding."""
# Extract input_ids and create attention_mask
input_ids_list = [enc["input_ids"] for enc in encodings]
tts_lm_input_ids_list = [enc["tts_lm_input_ids"] for enc in encodings]
tts_text_ids_list = [enc["tts_text_ids"] for enc in encodings]
speech_input_masks_list = [enc["speech_input_mask"] for enc in encodings]
attention_masks = [[1] * len(ids) for ids in input_ids_list] if return_attention_mask else None
tts_lm_attention_masks = [[1] * len(ids) for ids in tts_lm_input_ids_list] if return_attention_mask else None
# Process speech inputs
all_speech_inputs = []
has_speech = False
for enc in encodings:
if enc["speech_inputs"] is not None:
all_speech_inputs.extend(enc["speech_inputs"])
has_speech = True
# Prepare batch encoding
batch_encoding = BatchEncoding()
# Handle tensor conversion
if return_tensors is not None:
batch_encoding["input_ids"] = torch.tensor(input_ids_list, dtype=torch.long)
batch_encoding["tts_lm_input_ids"] = torch.tensor(tts_lm_input_ids_list, dtype=torch.long)
batch_encoding["tts_text_ids"] = torch.tensor(tts_text_ids_list, dtype=torch.long)
if return_attention_mask and attention_masks is not None:
batch_encoding["attention_mask"] = torch.tensor(attention_masks, dtype=torch.long)
batch_encoding["tts_lm_attention_mask"] = torch.tensor(tts_lm_attention_masks, dtype=torch.long)
batch_encoding["speech_input_mask"] = torch.tensor(speech_input_masks_list, dtype=torch.bool)
else:
batch_encoding["input_ids"] = input_ids_list
batch_encoding["tts_lm_input_ids"] = tts_lm_input_ids_list
batch_encoding["tts_text_ids"] = tts_text_ids_list
if return_attention_mask and attention_masks is not None:
batch_encoding["attention_mask"] = attention_masks
batch_encoding["tts_lm_attention_mask"] = tts_lm_attention_masks
batch_encoding["speech_input_mask"] = speech_input_masks_list
# Process speech tensors if present
if has_speech:
speech_dict = self.prepare_speech_inputs(
all_speech_inputs,
return_tensors=return_tensors,
)
batch_encoding["speech_tensors"] = speech_dict["padded_speeches"]
batch_encoding["speech_masks"] = speech_dict["speech_masks"]
else:
batch_encoding["speech_tensors"] = None
batch_encoding["speech_masks"] = None
return batch_encoding
def prepare_speech_inputs(
self,
speech_inputs: List[np.ndarray],
return_tensors: Optional[Union[str, TensorType]] = None,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> Dict[str, Any]:
"""
Prepare speech inputs for model consumption.
Args:
speech_inputs: List of speech arrays
return_tensors: Output tensor type
device: Device to place tensors on
dtype: Data type for tensors
Returns:
Dictionary with padded_speeches and speech_masks
"""
if not speech_inputs:
return {"padded_speeches": None, "speech_masks": None}
# Calculate sequence lengths
vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) for s in speech_inputs]
# vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) if s.ndim == 1 else s.shape[0] for s in speech_inputs]
max_speech_length = max(s.shape[0] for s in speech_inputs)
# Pad speeches
if speech_inputs[0].ndim == 1:
padded_speeches = np.full((len(speech_inputs), max_speech_length), fill_value=0, dtype=np.float32)
else:
padded_speeches = np.full((len(speech_inputs), max_speech_length, speech_inputs[0].shape[-1]), fill_value=0, dtype=np.float32)
speech_masks = np.zeros((len(speech_inputs), max(vae_tok_seqlens)), dtype=np.bool_)
for i, (speech, vae_tok_length) in enumerate(zip(speech_inputs, vae_tok_seqlens)):
padded_speeches[i, :len(speech)] = speech
speech_masks[i, :vae_tok_length] = True
result = {
"padded_speeches": padded_speeches,
"speech_masks": speech_masks,
}
# Convert to tensors if requested
if return_tensors == "pt":
result["padded_speeches"] = torch.tensor(padded_speeches, device=device, dtype=dtype or torch.float32)
result["speech_masks"] = torch.tensor(speech_masks, device=device, dtype=torch.bool)
return result
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.batch_decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
"""
Return the list of inputs accepted by the model.
"""
tokenizer_input_names = self.tokenizer.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + audio_processor_input_names + ["speech_inputs", "speech_input_mask"]))
def save_audio(self,
audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]],
output_path: str = "output.wav",
sampling_rate: Optional[int] = None,
normalize: bool = False,
batch_prefix: str = "audio_",
) -> str:
"""
Save audio data to a file.
Args:
audio (Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]):
The audio data to save. Can be a single tensor/array or a list of them.
output_path (str, optional): Path to save the audio file. Defaults to "output.wav".
sampling_rate (int, optional): Sampling rate for the audio. If None, uses the processor's default.
normalize (bool, optional): Whether to normalize the audio before saving. Defaults to False.
batch_prefix (str, optional): Prefix for batch audio files. Defaults to "audio_".
Returns:
str: The path to the saved audio file.
"""
return self.audio_processor.save_audio(audio, output_path=output_path, sampling_rate=sampling_rate, normalize=normalize, batch_prefix=batch_prefix)
__all__ = [
"VibeVoiceStreamingProcessor",
]