Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,11 +4,7 @@ import pandas as pd
|
|
| 4 |
|
| 5 |
from transformers import pipeline
|
| 6 |
|
| 7 |
-
# model_name="aminghias/distilbert-base-uncased-finetuned-imdb"
|
| 8 |
|
| 9 |
-
# mask_filler = pipeline(
|
| 10 |
-
# "fill-mask", model=model_name
|
| 11 |
-
# )
|
| 12 |
|
| 13 |
pipe = pipeline("fill-mask", model="aminghias/Clinical-BERT-finetuned")
|
| 14 |
pipe2 = pipeline("fill-mask", model="emilyalsentzer/Bio_ClinicalBERT")
|
|
@@ -16,8 +12,6 @@ pipe3= pipeline("fill-mask", model="medicalai/ClinicalBERT")
|
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
def predict(text):
|
| 22 |
|
| 23 |
pred1 = pipe(text)
|
|
@@ -48,36 +42,27 @@ def predict(text):
|
|
| 48 |
|
| 49 |
df_join=df_join.sort_values(by='score_average',ascending=False)
|
| 50 |
df_join=df_join.reset_index(drop=True)
|
| 51 |
-
|
| 52 |
-
# df_join=df_join.fillna(0)
|
| 53 |
df=df_join.copy()
|
| 54 |
df_join=df_join[['token_str','score_average','score_finetuned_CBERT','score_Bio_CBERT','score_CBERT']].head()
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# print(df_join)
|
| 59 |
-
# df_join['sum_sequence'][0]
|
| 60 |
return (df['sum_sequence'][0],df_join)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
# return (pipe(text)[0]['sequence'],pipe2(text)[0]['sequence'])
|
| 64 |
|
| 65 |
demo = gr.Interface(
|
| 66 |
fn=predict,
|
| 67 |
inputs='text',
|
| 68 |
# outputs='text',
|
| 69 |
outputs=['text', gr.Dataframe()],
|
| 70 |
-
# outputs='text','text',
|
| 71 |
-
|
| 72 |
-
# outputs=gr.Dataframe(headers=['title', 'author', 'text']), allow_flagging='never')
|
| 73 |
|
| 74 |
title="Filling Missing Clinical/Medical Data ",
|
| 75 |
examples=[ ['The high blood pressure was due to [MASK] which is critical.'],
|
| 76 |
['The patient is suffering from throat infection causing [MASK] and cough.']
|
| 77 |
],
|
| 78 |
description="This application fills any missing words in the medical domain",
|
| 79 |
-
|
| 80 |
-
# fn = infer, inputs = inputs, outputs = outputs, examples = [[df_join.head()]]
|
| 81 |
)
|
| 82 |
|
| 83 |
demo.launch()
|
|
|
|
| 4 |
|
| 5 |
from transformers import pipeline
|
| 6 |
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
pipe = pipeline("fill-mask", model="aminghias/Clinical-BERT-finetuned")
|
| 10 |
pipe2 = pipeline("fill-mask", model="emilyalsentzer/Bio_ClinicalBERT")
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
| 15 |
def predict(text):
|
| 16 |
|
| 17 |
pred1 = pipe(text)
|
|
|
|
| 42 |
|
| 43 |
df_join=df_join.sort_values(by='score_average',ascending=False)
|
| 44 |
df_join=df_join.reset_index(drop=True)
|
| 45 |
+
|
|
|
|
| 46 |
df=df_join.copy()
|
| 47 |
df_join=df_join[['token_str','score_average','score_finetuned_CBERT','score_Bio_CBERT','score_CBERT']].head()
|
| 48 |
|
| 49 |
+
|
|
|
|
|
|
|
|
|
|
| 50 |
return (df['sum_sequence'][0],df_join)
|
| 51 |
|
| 52 |
+
|
|
|
|
| 53 |
|
| 54 |
demo = gr.Interface(
|
| 55 |
fn=predict,
|
| 56 |
inputs='text',
|
| 57 |
# outputs='text',
|
| 58 |
outputs=['text', gr.Dataframe()],
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
title="Filling Missing Clinical/Medical Data ",
|
| 61 |
examples=[ ['The high blood pressure was due to [MASK] which is critical.'],
|
| 62 |
['The patient is suffering from throat infection causing [MASK] and cough.']
|
| 63 |
],
|
| 64 |
description="This application fills any missing words in the medical domain",
|
| 65 |
+
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
demo.launch()
|