ama2aifusion commited on
Commit
59df45a
·
verified ·
1 Parent(s): a5faf24

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +228 -0
agent.py CHANGED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
+
19
+ from langchain.tools import Tool
20
+
21
+
22
+ load_dotenv()
23
+
24
+ def multiply(a: int, b: int) -> int:
25
+ return a * b
26
+
27
+ multiply_tool = Tool(
28
+ name="multiply",
29
+ func=multiply,
30
+ description="Multiply two numbers. Args (a: first int, b: second int)"
31
+ )
32
+
33
+ def add(a: int, b: int) -> int:
34
+ return a + b
35
+
36
+ add_tool = Tool(
37
+ name="add",
38
+ func=add,
39
+ description="Add two numbers. Args (a: first int, b: second int)"
40
+ )
41
+
42
+ def substract(a: int, b: int) -> int:
43
+ return a - b
44
+
45
+ substract_tool = Tool(
46
+ name="substract",
47
+ func=substract,
48
+ description="Substract two numbers. Args (a: first int, b: second int)"
49
+ )
50
+
51
+ def divide(a: int, b: int) -> int:
52
+ if b == 0:
53
+ raise ValueError("Cannot divide by zero.")
54
+ return a / b
55
+
56
+ divide_tool = Tool(
57
+ name="divide",
58
+ func=divide,
59
+ description="Divide two numbers. Args (a: first int, b: second int)"
60
+ )
61
+
62
+ def modulus(a: int, b: int) -> int:
63
+ return a % b
64
+
65
+ modulus_tool = Tool(
66
+ name="modulus",
67
+ func=modulus,
68
+ description="Modulus two numbers. Args (a: first int, b: second int)"
69
+ )
70
+
71
+ def wiki_search(query: str) -> str:
72
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
73
+ formatted_search_docs = "\n\n---\n\n".join(
74
+ [
75
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
76
+ for doc in search_docs
77
+ ])
78
+ return {"wiki_results": formatted_search_docs}
79
+
80
+ wiki_search_tool = Tool(
81
+ name="wiki_search",
82
+ func=wiki_search,
83
+ description="Search Wikipedia for a query and return maximum 2 results. Args (query: the search query)"
84
+ )
85
+
86
+ def web_search(query: str) -> str:
87
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
88
+ formatted_search_docs = "\n\n---\n\n".join(
89
+ [
90
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
91
+ for doc in search_docs
92
+ ])
93
+ return {"web_results": formatted_search_docs}
94
+
95
+ web_search_tool = Tool(
96
+ name="web_search",
97
+ func=web_search,
98
+ description="Search Tavily for a query and return maximum 3 results. Args (query: the search query)"
99
+ )
100
+
101
+ def arvix_search(query: str) -> str:
102
+ """Search Arxiv for a query and return maximum 3 result.
103
+
104
+ Args:
105
+ query: The search query."""
106
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
107
+ formatted_search_docs = "\n\n---\n\n".join(
108
+ [
109
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
110
+ for doc in search_docs
111
+ ])
112
+ return {"arvix_results": formatted_search_docs}
113
+
114
+ arvix_search_tool = Tool(
115
+ name="arvix_search",
116
+ func=arvix_search,
117
+ description="Search Arxiv for a query and return maximum 3 result. Args (query: the search query)"
118
+ )
119
+
120
+
121
+ # load the system prompt from the file
122
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
123
+ system_prompt = f.read()
124
+
125
+ # System message
126
+ sys_msg = SystemMessage(content=system_prompt)
127
+
128
+ tools = [
129
+ multiply_tool,
130
+ add_tool,
131
+ substract_tool,
132
+ divide_tool,
133
+ modulus_tool,
134
+ wiki_search_tool,
135
+ web_search_tool,
136
+ arvix_search_tool,
137
+ ]
138
+
139
+ # Build graph function
140
+ def build_graph(provider: str = "google"):
141
+ """Build the graph"""
142
+ # Load environment variables from .env file
143
+ if provider == "google":
144
+ # Google Gemini
145
+ chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
146
+ elif provider == "groq":
147
+ # Groq https://console.groq.com/docs/models
148
+ chat = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
149
+ elif provider == "huggingface":
150
+ # TODO: Add huggingface endpoint
151
+ chat = ChatHuggingFace(
152
+ llm=HuggingFaceEndpoint(
153
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
154
+ temperature=0,
155
+ ),
156
+ )
157
+ else:
158
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
159
+ # Bind tools to LLM
160
+ chat_with_tools = chat.bind_tools(tools)
161
+
162
+ # Node
163
+ def assistant(state: MessagesState):
164
+ """Assistant node"""
165
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
166
+
167
+ # def retriever(state: MessagesState):
168
+ # """Retriever node"""
169
+ # similar_question = vector_store.similarity_search(state["messages"][0].content)
170
+ #example_msg = HumanMessage(
171
+ # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
172
+ # )
173
+ # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
174
+
175
+ from langchain_core.messages import AIMessage
176
+
177
+ def retriever(state: MessagesState):
178
+ query = state["messages"][-1].content
179
+ similar_doc = vector_store.similarity_search(query, k=1)[0]
180
+
181
+ content = similar_doc.page_content
182
+ if "Final answer :" in content:
183
+ answer = content.split("Final answer :")[-1].strip()
184
+ else:
185
+ answer = content.strip()
186
+
187
+ return {"messages": [AIMessage(content=answer)]}
188
+
189
+ # builder = StateGraph(MessagesState)
190
+ #builder.add_node("retriever", retriever)
191
+ #builder.add_node("assistant", assistant)
192
+ #builder.add_node("tools", ToolNode(tools))
193
+ #builder.add_edge(START, "retriever")
194
+ #builder.add_edge("retriever", "assistant")
195
+ #builder.add_conditional_edges(
196
+ # "assistant",
197
+ # tools_condition,
198
+ #)
199
+ #builder.add_edge("tools", "assistant")
200
+
201
+ #builder = StateGraph(MessagesState)
202
+ #builder.add_node("retriever", retriever)
203
+
204
+ # Retriever ist Start und Endpunkt
205
+ #builder.set_entry_point("retriever")
206
+ #builder.set_finish_point("retriever")
207
+
208
+ # Compile graph
209
+ #return builder.compile()
210
+
211
+
212
+
213
+ builder = StateGraph(MessagesState)
214
+ # Define nodes: these do the work
215
+ builder.add_node("assistant", assistant)
216
+ builder.add_node("tools", ToolNode(tools))
217
+ # Define edges: these determine how the control flow moves
218
+ builder.add_edge(START, "assistant")
219
+ builder.add_conditional_edges(
220
+ "assistant",
221
+ # If the latest message requires a tool, route to tools
222
+ # Otherwise, provide a direct response
223
+ tools_condition,
224
+ )
225
+ builder.add_edge("tools", "assistant")
226
+
227
+ # Compile graph
228
+ return builder.compile()