File size: 41,017 Bytes
086ffee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb9bc5
086ffee
 
 
 
 
ecb9bc5
 
f3b3fd8
 
 
 
ecb9bc5
 
 
 
 
 
 
086ffee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb9bc5
 
 
 
 
 
 
 
dffdda5
ecb9bc5
 
dffdda5
 
 
 
 
ecb9bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086ffee
 
 
ecb9bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237ee8e
 
 
 
 
086ffee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb9bc5
086ffee
ecb9bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086ffee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb9bc5
086ffee
 
ecb9bc5
 
 
 
 
086ffee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272b3bb
45ed548
 
 
 
 
 
 
086ffee
 
 
 
 
 
 
 
 
272b3bb
74d36f0
 
 
 
 
f67cadb
 
 
 
 
 
74d36f0
769bce4
 
7a52211
 
 
f67cadb
 
 
74d36f0
f67cadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7310187
 
 
 
f67cadb
 
7310187
 
f67cadb
 
 
7310187
 
 
7a52211
 
7310187
 
 
 
 
 
 
7a52211
769bce4
 
272b3bb
45ed548
086ffee
b224160
4c09fcb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
"""
Gradio Chatbot Interface for CGT-LLM-Beta RAG System

This application provides a web interface for the RAG chatbot, allowing users to:
- Select different LLM models from a dropdown
- Choose education level for personalized answers (Middle School, High School, Professional, Improved)
- View answers with Flesch-Kincaid grade level scores
- See source documents and similarity scores for every answer

Usage:
    python app.py

IMPORTANT: Before using, update the MODEL_MAP dictionary with correct HuggingFace paths
for models that currently have placeholder paths (Llama-4-Scout, MediPhi, Phi-4-reasoning).

For Hugging Face Spaces:
    - Ensure vector database is built (run bot.py with indexing first)
    - Model will be loaded on startup
    - Access via the Gradio interface
"""

import gradio as gr
import argparse
import sys
import os
from typing import Tuple, Optional, List
import logging
import textstat
import torch

# Import from bot.py
from bot import RAGBot, parse_args, Chunk

# Set up logging first (before any logger usage)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# For Hugging Face Inference API
try:
    from huggingface_hub import InferenceClient
    HF_INFERENCE_AVAILABLE = True
except ImportError:
    HF_INFERENCE_AVAILABLE = False
    logger.warning("huggingface_hub not available, InferenceClient will not work")

# Model mapping: short name -> full HuggingFace path
MODEL_MAP = {
    "Llama-3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Llama-4-Scout-17B-16E-Instruct": "meta-llama/Llama-4-Scout-17B-16E-Instruct",  
    "MediPhi-Instruct": "microsoft/MediPhi-Instruct",  
    "MediPhi": "microsoft/MediPhi",  
    "Phi-4-reasoning": "microsoft/Phi-4-reasoning",  
}

# Education level mapping
EDUCATION_LEVELS = {
    "Middle School": "middle_school",
    "High School": "high_school",
    "College": "college",
    "Doctoral": "doctoral"
}

# Example questions from the results CSV (hardcoded for easy access)
EXAMPLE_QUESTIONS = [
    "Can a BRCA2 variant skip a generation?",
    "Can a PMS2 variant skip a generation?",
    "Can an EPCAM/MSH2 variant skip a generation?",
    "Can an MLH1 variant skip a generation?",
    "Can an MSH2 variant skip a generation?",
    "Can an MSH6 variant skip a generation?",
    "Can I pass this MSH2 variant to my kids?",
    "Can only women carry a BRCA inherited mutation?",
    "Does GINA cover life or disability insurance?",
    "Does having a BRCA1 mutation mean I will definitely have cancer?",
    "Does having a BRCA2 mutation mean I will definitely have cancer?",
    "Does having a PMS2 mutation mean I will definitely have cancer?",
    "Does having an EPCAM/MSH2 mutation mean I will definitely have cancer?",
    "Does having an MLH1 mutation mean I will definitely have cancer?",
    "Does having an MSH2 mutation mean I will definitely have cancer?",
    "Does having an MSH6 mutation mean I will definitely have cancer?",
    "Does this BRCA1 genetic variant affect my cancer treatment?",
    "Does this BRCA2 genetic variant affect my cancer treatment?",
    "Does this EPCAM/MSH2 genetic variant affect my cancer treatment?",
    "Does this MLH1 genetic variant affect my cancer treatment?",
    "Does this MSH2 genetic variant affect my cancer treatment?",
    "Does this MSH6 genetic variant affect my cancer treatment?",
    "Does this PMS2 genetic variant affect my cancer treatment?",
    "How can I cope with this diagnosis?",
    "How can I get my kids tested?",
    "How can I help others with my condition?",
    "How might my genetic test results change over time?",
    "I don't talk to my family/parents/sister/brother. How can I share this with them?",
    "I have a BRCA pathogenic variant and I want to have children, what are my options?",
    "Is genetic testing for my family members covered by insurance?",
    "Is new research being done on my condition?",
    "Is this BRCA1 variant something I inherited?",
    "Is this BRCA2 variant something I inherited?",
    "Is this EPCAM/MSH2 variant something I inherited?",
    "Is this MLH1 variant something I inherited?",
    "Is this MSH2 variant something I inherited?",
    "Is this MSH6 variant something I inherited?",
    "Is this PMS2 variant something I inherited?",
    "My relative doesn't have insurance. What should they do?",
    "People who test positive for a genetic mutation are they at risk of losing their health insurance?",
    "Should I contact my male and female relatives?",
    "Should my family members get tested?",
    "What are the Risks and Benefits of Risk-Reducing Surgeries for Lynch Syndrome?",
    "What are the recommendations for my family members if I have a BRCA1 mutation?",
    "What are the recommendations for my family members if I have a BRCA2 mutation?",
    "What are the recommendations for my family members if I have a PMS2 mutation?",
    "What are the recommendations for my family members if I have an EPCAM/MSH2 mutation?",
    "What are the recommendations for my family members if I have an MLH1 mutation?",
    "What are the recommendations for my family members if I have an MSH2 mutation?",
    "What are the recommendations for my family members if I have an MSH6 mutation?",
    "What are the surveillance and preventions I can take to reduce my risk of cancer or detecting cancer early if I have a BRCA mutation?",
    "What are the surveillance and preventions I can take to reduce my risk of cancer or detecting cancer early if I have an EPCAM/MSH2 mutation?",
    "What are the surveillance and preventions I can take to reduce my risk of cancer or detecting cancer early if I have an MSH2 mutation?",
    "What does a BRCA1 genetic variant mean for me?",
    "What does a BRCA2 genetic variant mean for me?",
    "What does a PMS2 genetic variant mean for me?",
    "What does an EPCAM/MSH2 genetic variant mean for me?",
    "What does an MLH1 genetic variant mean for me?",
    "What does an MSH2 genetic variant mean for me?",
    "What does an MSH6 genetic variant mean for me?",
    "What if I feel overwhelmed?",
    "What if I want to have children and have a hereditary cancer gene? What are my reproductive options?",
    "What if a family member doesn't want to get tested?",
    "What is Lynch Syndrome?",
    "What is my cancer risk if I have BRCA1 Hereditary Breast and Ovarian Cancer syndrome?",
    "What is my cancer risk if I have BRCA2 Hereditary Breast and Ovarian Cancer syndrome?",
    "What is my cancer risk if I have MLH1 Lynch syndrome?",
    "What is my cancer risk if I have MSH2 or EPCAM-associated Lynch syndrome?",
    "What is my cancer risk if I have MSH6 Lynch syndrome?",
    "What is my cancer risk if I have PMS2 Lynch syndrome?",
    "What other resources are available to help me?",
    "What screening tests do you recommend for BRCA1 carriers?",
    "What screening tests do you recommend for BRCA2 carriers?",
    "What screening tests do you recommend for EPCAM/MSH2 carriers?",
    "What screening tests do you recommend for MLH1 carriers?",
    "What screening tests do you recommend for MSH2 carriers?",
    "What screening tests do you recommend for MSH6 carriers?",
    "What screening tests do you recommend for PMS2 carriers?",
    "What steps can I take to manage my cancer risk if I have Lynch syndrome?",
    "What types of cancers am I at risk for with a BRCA1 mutation?",
    "What types of cancers am I at risk for with a BRCA2 mutation?",
    "What types of cancers am I at risk for with a PMS2 mutation?",
    "What types of cancers am I at risk for with an EPCAM/MSH2 mutation?",
    "What types of cancers am I at risk for with an MLH1 mutation?",
    "What types of cancers am I at risk for with an MSH2 mutation?",
    "What types of cancers am I at risk for with an MSH6 mutation?",
    "Where can I find a genetic counselor?",
    "Which of my relatives are at risk?",
    "Who are my first-degree relatives?",
    "Who do my family members call to have genetic testing?",
    "Why do some families with Lynch syndrome have more cases of cancer than others?",
    "Why should I share my BRCA1 genetic results with family?",
    "Why should I share my BRCA2 genetic results with family?",
    "Why should I share my EPCAM/MSH2 genetic results with family?",
    "Why should I share my MLH1 genetic results with family?",
    "Why should I share my MSH2 genetic results with family?",
    "Why should I share my MSH6 genetic results with family?",
    "Why should I share my PMS2 genetic results with family?",
    "Why would my relatives want to know if they have this? What can they do about it?",
    "Will my insurance cover testing for my parents/brother/sister?",
    "Will this affect my health insurance?",
]


class InferenceAPIBot:
    """Wrapper that uses Hugging Face Inference API instead of loading models locally"""
    
    def __init__(self, bot: RAGBot, hf_token: str):
        """Initialize with a RAGBot (for vector DB) and HF token for Inference API"""
        self.bot = bot  # Use bot for vector DB and formatting
        self.client = InferenceClient(api_key=hf_token)
        self.current_model = bot.args.model
        # Don't set args as attribute - access via bot.args instead
        logger.info(f"InferenceAPIBot initialized with model: {self.current_model}")
    
    @property
    def args(self):
        """Access args from the wrapped bot"""
        return self.bot.args
    
    def generate_answer(self, prompt: str, **kwargs) -> str:
        """Generate answer using Inference API"""
        try:
            # Convert prompt to chat format
            messages = [{"role": "user", "content": prompt}]
            
            # Call Inference API
            completion = self.client.chat.completions.create(
                model=self.current_model,
                messages=messages,
                max_tokens=kwargs.get('max_new_tokens', 512),
                temperature=kwargs.get('temperature', 0.2),
                top_p=kwargs.get('top_p', 0.9),
            )
            
            answer = completion.choices[0].message.content
            return answer
        except Exception as e:
            logger.error(f"Error calling Inference API: {e}", exc_info=True)
            return f"Error generating answer: {str(e)}"
    
    def enhance_readability(self, answer: str, target_level: str = "middle_school") -> Tuple[str, float]:
        """Enhance readability using Inference API"""
        try:
            # Define prompts for different reading levels (same as bot.py)
            if target_level == "middle_school":
                level_description = "middle school reading level (ages 12-14, 6th-8th grade)"
                instructions = """
- Use simpler medical terms or explain them
- Medium-length sentences
- Clear, structured explanations
- Keep important medical information accessible"""
            elif target_level == "high_school":
                level_description = "high school reading level (ages 15-18, 9th-12th grade)"
                instructions = """
- Use appropriate medical terminology with context
- Varied sentence length
- Comprehensive yet accessible explanations
- Maintain technical accuracy while ensuring clarity"""
            elif target_level == "college":
                level_description = "college reading level (undergraduate level, ages 18-22)"
                instructions = """
- Use standard medical terminology with brief explanations
- Professional and clear writing style
- Include relevant clinical context
- Maintain scientific accuracy and precision
- Appropriate for undergraduate students in health sciences"""
            elif target_level == "doctoral":
                level_description = "doctoral/professional reading level (graduate level, medical professionals)"
                instructions = """
- Use advanced medical and scientific terminology
- Include detailed clinical and research context
- Reference specific mechanisms, pathways, and evidence
- Provide comprehensive technical explanations
- Appropriate for medical professionals, researchers, and graduate students
- Include nuanced discussions of clinical implications and research findings"""
            else:
                raise ValueError(f"Unknown target_level: {target_level}")
            
            # Create messages for chat API
            system_message = f"""You are a helpful medical assistant who specializes in explaining complex medical information at appropriate reading levels. Rewrite the following medical answer for {level_description}:
{instructions}
- Keep the same important information but adapt the complexity
- Provide context for technical terms
- Ensure the answer is informative yet understandable"""
            
            user_message = f"Please rewrite this medical answer for {level_description}:\n\n{answer}"
            
            messages = [
                {"role": "system", "content": system_message},
                {"role": "user", "content": user_message}
            ]
            
            # Call Inference API
            completion = self.client.chat.completions.create(
                model=self.current_model,
                messages=messages,
                max_tokens=512 if target_level in ["college", "doctoral"] else 384,
                temperature=0.4 if target_level in ["college", "doctoral"] else 0.3,
            )
            
            enhanced_answer = completion.choices[0].message.content
            # Clean the answer (same as bot.py)
            cleaned = self.bot._clean_readability_answer(enhanced_answer, target_level)
            
            # Calculate Flesch score
            try:
                flesch_score = textstat.flesch_kincaid_grade(cleaned)
            except:
                flesch_score = 0.0
            
            return cleaned, flesch_score
        except Exception as e:
            logger.error(f"Error enhancing readability: {e}", exc_info=True)
            return answer, 0.0
    
    # Delegate other methods to bot
    def format_prompt(self, context_chunks: List[Chunk], question: str) -> str:
        return self.bot.format_prompt(context_chunks, question)
    
    def retrieve_with_scores(self, query: str, k: int) -> Tuple[List[Chunk], List[float]]:
        return self.bot.retrieve_with_scores(query, k)
    
    def _categorize_question(self, question: str) -> str:
        return self.bot._categorize_question(question)
    
    @property
    def args(self):
        return self.bot.args
    
    @property
    def vector_retriever(self):
        return self.bot.vector_retriever


class GradioRAGInterface:
    """Wrapper class to integrate RAGBot with Gradio"""
    
    def __init__(self, initial_bot: RAGBot, use_inference_api: bool = False):
        # Check if we should use Inference API (on Spaces)
        if use_inference_api and HF_INFERENCE_AVAILABLE:
            hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN")
            if hf_token:
                self.bot = InferenceAPIBot(initial_bot, hf_token)
                self.use_inference_api = True
                logger.info("Using Hugging Face Inference API")
            else:
                logger.warning("HF_TOKEN not found, falling back to local model")
                self.bot = initial_bot
                self.use_inference_api = False
        else:
            self.bot = initial_bot
            self.use_inference_api = False
        
        # Get current model from bot args (not a direct attribute)
        self.current_model = self.bot.args.model if hasattr(self.bot, 'args') else getattr(self.bot, 'current_model', None)
        if self.current_model is None and hasattr(self.bot, 'bot'):
            # If using InferenceAPIBot, get from the wrapped bot
            self.current_model = self.bot.bot.args.model
        self.data_dir = initial_bot.args.data_dir
        logger.info("GradioRAGInterface initialized")
    
    def _find_file_path(self, filename: str) -> str:
        """Find the full file path for a given filename"""
        from pathlib import Path
        data_path = Path(self.data_dir)
        
        if not data_path.exists():
            return ""
        
        # Search for the file recursively
        for file_path in data_path.rglob(filename):
            return str(file_path)
        
        return ""
    
    def reload_model(self, model_short_name: str) -> str:
        """Reload the model when user selects a different one"""
        if model_short_name not in MODEL_MAP:
            return f"Error: Unknown model '{model_short_name}'"
        
        new_model_path = MODEL_MAP[model_short_name]
        
        # If same model, no need to reload
        if new_model_path == self.current_model:
            return f"Model already loaded: {model_short_name}"
        
        try:
            logger.info(f"Switching model from {self.current_model} to {new_model_path}")
            
            if self.use_inference_api:
                # For Inference API, just update the model name
                self.bot.current_model = new_model_path
                self.current_model = new_model_path
                return f"βœ“ Model switched to: {model_short_name} (using Inference API)"
            else:
                # For local model, reload it
                # Update args
                self.bot.args.model = new_model_path
                
                # Clear old model from memory
                if hasattr(self.bot, 'model') and self.bot.model is not None:
                    del self.bot.model
                    del self.bot.tokenizer
                    torch.cuda.empty_cache() if torch.cuda.is_available() else None
                
                # Load new model
                self.bot._load_model()
                self.current_model = new_model_path
                
                return f"βœ“ Model loaded: {model_short_name}"
        except Exception as e:
            logger.error(f"Error reloading model: {e}", exc_info=True)
            return f"βœ— Error loading model: {str(e)}"
    
    def process_question(
        self,
        question: str,
        model_name: str,
        education_level: str,
        k: int,
        temperature: float,
        max_tokens: int
    ) -> Tuple[str, str, str, str, str]:
        """
        Process a single question and return formatted results
        
        Returns:
            Tuple of (answer, flesch_score, sources, similarity_scores, question_category)
        """
        import time
        
        if not question or not question.strip():
            return "Please enter a question.", "N/A", "", "", ""
        
        try:
            start_time = time.time()
            logger.info(f"Processing question: {question[:50]}...")
            
            # Reload model if changed (this can take 1-3 minutes)
            if model_name in MODEL_MAP:
                model_path = MODEL_MAP[model_name]
                if model_path != self.current_model:
                    logger.info(f"Model changed, reloading from {self.current_model} to {model_path}")
                    reload_status = self.reload_model(model_name)
                    if reload_status.startswith("βœ—"):
                        return f"Error: {reload_status}", "N/A", "", "", ""
                    logger.info(f"Model reloaded in {time.time() - start_time:.1f}s")
            
            # Update bot args for this query
            self.bot.args.k = k
            self.bot.args.temperature = temperature
            # Limit max_tokens for faster generation in Gradio
            self.bot.args.max_new_tokens = min(max_tokens, 512)  # Cap at 512 for faster responses
            
            # Categorize question
            logger.info("Categorizing question...")
            question_group = self.bot._categorize_question(question)
            
            # Retrieve relevant chunks with similarity scores
            logger.info("Retrieving relevant documents...")
            retrieve_start = time.time()
            context_chunks, similarity_scores = self.bot.retrieve_with_scores(question, k)
            logger.info(f"Retrieved {len(context_chunks)} chunks in {time.time() - retrieve_start:.2f}s")
            
            if not context_chunks:
                return (
                    "I don't have enough information to answer this question. Please try rephrasing or asking about a different topic.",
                    "N/A",
                    "No sources found",
                    "No matches found",
                    question_group
                )
            
            # Format similarity scores
            similarity_scores_str = ", ".join([f"{score:.3f}" for score in similarity_scores])
            
            # Format sources with chunk text and file paths
            sources_list = []
            for i, (chunk, score) in enumerate(zip(context_chunks, similarity_scores)):
                # Try to find the file path
                file_path = self._find_file_path(chunk.filename)
                
                source_info = f"""
{'='*80}
SOURCE {i+1} | Similarity: {score:.3f}
{'='*80}
πŸ“„ File: {chunk.filename}
πŸ“ Path: {file_path if file_path else 'File path not found (search in Data Resources directory)'}
πŸ“Š Chunk: {chunk.chunk_id + 1}/{chunk.total_chunks} (Position: {chunk.start_pos}-{chunk.end_pos})

πŸ“ Full Chunk Text:
{chunk.text}

"""
                sources_list.append(source_info)
            
            sources = "\n".join(sources_list)
            
            # Generation kwargs
            gen_kwargs = {
                'max_new_tokens': min(max_tokens, 512),  # Cap for faster responses
                'temperature': temperature,
                'top_p': self.bot.args.top_p,
                'repetition_penalty': self.bot.args.repetition_penalty
            }
            
            # Generate answer based on education level
            answer = ""
            flesch_score = 0.0
            
            # Generate original answer first (needed for all enhancement levels)
            logger.info("Generating original answer...")
            gen_start = time.time()
            prompt = self.bot.format_prompt(context_chunks, question)
            original_answer = self.bot.generate_answer(prompt, **gen_kwargs)
            logger.info(f"Original answer generated in {time.time() - gen_start:.1f}s")
            
            # Enhance based on education level
            logger.info(f"Enhancing answer for {education_level} level...")
            enhance_start = time.time()
            if education_level == "middle_school":
                # Simplify to middle school level
                answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="middle_school")
                
            elif education_level == "high_school":
                # Simplify to high school level
                answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="high_school")
                
            elif education_level == "college":
                # Enhance to college level
                answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="college")
                
            elif education_level == "doctoral":
                # Enhance to doctoral/professional level
                answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="doctoral")
            else:
                answer = "Invalid education level selected."
                flesch_score = 0.0
            
            logger.info(f"Answer enhanced in {time.time() - enhance_start:.1f}s")
            total_time = time.time() - start_time
            logger.info(f"Total processing time: {total_time:.1f}s")
            
            # Clean the answer - remove special tokens and formatting
            import re
            cleaned_answer = answer
            
            # Remove special tokens (case-insensitive)
            special_tokens = [
                "<|end|>",
                "<|endoftext|>",
                "<|end_of_text|>",
                "<|eot_id|>",
                "<|start_header_id|>",
                "<|end_header_id|>",
                "<|assistant|>",
                "<|endoftext|>",
                "<|end_of_text|>",
            ]
            for token in special_tokens:
                # Remove case-insensitive
                cleaned_answer = re.sub(re.escape(token), '', cleaned_answer, flags=re.IGNORECASE)
            
            # Remove any remaining special token patterns like <|...|>
            cleaned_answer = re.sub(r'<\|[^|]+\|>', '', cleaned_answer)
            
            # Remove any markdown-style headers that might have been added
            cleaned_answer = re.sub(r'^\*\*.*?\*\*.*?\n', '', cleaned_answer, flags=re.MULTILINE)
            
            # Clean up extra whitespace and newlines
            cleaned_answer = re.sub(r'\n\s*\n\s*\n+', '\n\n', cleaned_answer)  # Multiple newlines to double
            cleaned_answer = re.sub(r'^\s+|\s+$', '', cleaned_answer, flags=re.MULTILINE)  # Trim lines
            cleaned_answer = cleaned_answer.strip()
            
            # Return just the clean answer (no headers or metadata)
            return (
                cleaned_answer,
                f"{flesch_score:.1f}",
                sources,
                similarity_scores_str,
                question_group  # Add question category as 5th return value
            )
            
        except Exception as e:
            logger.error(f"Error processing question: {e}", exc_info=True)
            return (
                f"An error occurred while processing your question: {str(e)}",
                "N/A",
                "",
                "",
                "Error"
            )


def create_interface(initial_bot: RAGBot, use_inference_api: bool = False) -> gr.Blocks:
    """Create and configure the Gradio interface"""
    
    # Use Inference API on Spaces, local model otherwise
    if use_inference_api is None:
        use_inference_api = os.getenv("SPACE_ID") is not None or os.getenv("SYSTEM") == "spaces"
    
    interface = GradioRAGInterface(initial_bot, use_inference_api=use_inference_api)
    
    # Get initial model name from bot
    initial_model_short = None
    for short_name, full_path in MODEL_MAP.items():
        if full_path == initial_bot.args.model:
            initial_model_short = short_name
            break
    if initial_model_short is None:
        initial_model_short = list(MODEL_MAP.keys())[0]
    
    with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as demo:
        gr.Markdown("""
        # 🧬 CGT-LLM-Beta: Genetic Counseling RAG Chatbot
        
        Ask questions about genetic counseling, cascade genetic testing, hereditary cancer syndromes, and related topics.
        
        The chatbot uses a Retrieval-Augmented Generation (RAG) system to provide evidence-based answers from medical literature.
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                question_input = gr.Textbox(
                    label="Your Question",
                    placeholder="e.g., What is Lynch Syndrome? What screening is recommended for BRCA1 carriers?",
                    lines=3
                )
                
                with gr.Row():
                    model_dropdown = gr.Dropdown(
                        choices=list(MODEL_MAP.keys()),
                        value=initial_model_short,
                        label="Select Model",
                        info="Choose which LLM model to use for generating answers"
                    )
                    
                    education_dropdown = gr.Dropdown(
                        choices=list(EDUCATION_LEVELS.keys()),
                        value=list(EDUCATION_LEVELS.keys())[0],
                        label="Education Level",
                        info="Select your education level for personalized answers"
                    )
                
                with gr.Accordion("Advanced Settings", open=False):
                    k_slider = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=5,
                        step=1,
                        label="Number of document chunks to retrieve (k)"
                    )
                    temperature_slider = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.2,
                        step=0.1,
                        label="Temperature (lower = more focused)"
                    )
                    max_tokens_slider = gr.Slider(
                        minimum=128,
                        maximum=1024,
                        value=512,
                        step=128,
                        label="Max Tokens (lower = faster responses)"
                    )
                
                submit_btn = gr.Button("Ask Question", variant="primary", size="lg")
                
            with gr.Column(scale=3):
                answer_output = gr.Textbox(
                    label="Answer",
                    lines=20,
                    interactive=False,
                    elem_classes=["answer-box"]
                )
                
                with gr.Row():
                    flesch_output = gr.Textbox(
                        label="Flesch-Kincaid Grade Level",
                        value="N/A",
                        interactive=False,
                        scale=1
                    )
                    
                    similarity_output = gr.Textbox(
                        label="Similarity Scores",
                        value="",
                        interactive=False,
                        scale=1
                    )
                    
                    category_output = gr.Textbox(
                        label="Question Category",
                        value="",
                        interactive=False,
                        scale=1
                    )
                
                sources_output = gr.Textbox(
                    label="Source Documents (with Chunk Text)",
                    lines=15,
                    interactive=False,
                    info="Shows the retrieved document chunks with full text. File paths are shown for easy access."
                )
        
        # Example questions - all questions from the results CSV (scrollable)
        gr.Markdown("### πŸ’‘ Example Questions")
        gr.Markdown(f"Select a question below to use it in the chatbot ({len(EXAMPLE_QUESTIONS)} questions - scrollable dropdown):")
        
        # Use Dropdown which is naturally scrollable with many options
        example_questions_dropdown = gr.Dropdown(
            choices=EXAMPLE_QUESTIONS,
            label="Example Questions",
            value=None,
            info="Open the dropdown and scroll through all questions. Select one to use it.",
            interactive=True,
            container=True,
            scale=1
        )
        
        # Update question input when dropdown selection changes
        def update_question_from_dropdown(selected_question):
            return selected_question if selected_question else ""
        
        example_questions_dropdown.change(
            fn=update_question_from_dropdown,
            inputs=example_questions_dropdown,
            outputs=question_input
        )
        
        # Footer
        gr.Markdown("""
        ---
        **Note:** This chatbot provides informational answers based on medical literature. 
        It is not a substitute for professional medical advice, diagnosis, or treatment. 
        Always consult with qualified healthcare providers for medical decisions.
        """)
        
        # Connect the submit button
        def process_with_education_level(question, model, education, k, temp, max_tok):
            education_key = EDUCATION_LEVELS[education]
            return interface.process_question(question, model, education_key, k, temp, max_tok)
        
        submit_btn.click(
            fn=process_with_education_level,
            inputs=[
                question_input,
                model_dropdown,
                education_dropdown,
                k_slider,
                temperature_slider,
                max_tokens_slider
            ],
            outputs=[
                answer_output,
                flesch_output,
                sources_output,
                similarity_output,
                category_output
            ]
        )
        
        # Also allow Enter key to submit
        question_input.submit(
            fn=process_with_education_level,
            inputs=[
                question_input,
                model_dropdown,
                education_dropdown,
                k_slider,
                temperature_slider,
                max_tokens_slider
            ],
            outputs=[
                answer_output,
                flesch_output,
                sources_output,
                similarity_output,
                category_output
            ]
        )
    
    return demo


def main():
    """Main function to launch the Gradio app"""
    # Parse arguments with defaults suitable for Gradio
    parser = argparse.ArgumentParser(description="Gradio Interface for CGT-LLM-Beta RAG Chatbot")
    
    # Model and database settings
    parser.add_argument('--model', type=str, default='meta-llama/Llama-3.2-3B-Instruct',
                       help='HuggingFace model name')
    parser.add_argument('--vector-db-dir', default='./chroma_db',
                       help='Directory for ChromaDB persistence')
    parser.add_argument('--data-dir', default='./Data Resources',
                       help='Directory containing documents (for indexing if needed)')
    
    # Generation parameters
    parser.add_argument('--max-new-tokens', type=int, default=1024,
                       help='Maximum new tokens to generate')
    parser.add_argument('--temperature', type=float, default=0.2,
                       help='Generation temperature')
    parser.add_argument('--top-p', type=float, default=0.9,
                       help='Top-p sampling parameter')
    parser.add_argument('--repetition-penalty', type=float, default=1.1,
                       help='Repetition penalty')
    
    # Retrieval parameters
    parser.add_argument('--k', type=int, default=5,
                       help='Number of chunks to retrieve per question')
    
    # Other settings
    parser.add_argument('--skip-indexing', action='store_true',
                       help='Skip document indexing (use existing vector DB)')
    parser.add_argument('--verbose', action='store_true',
                       help='Enable verbose logging')
    parser.add_argument('--share', action='store_true',
                       help='Create a public Gradio share link')
    parser.add_argument('--server-name', type=str, default='127.0.0.1',
                       help='Server name (0.0.0.0 for public access)')
    parser.add_argument('--server-port', type=int, default=7860,
                       help='Server port')
    
    args = parser.parse_args()
    
    # Set logging level
    if args.verbose:
        logging.getLogger().setLevel(logging.DEBUG)
    
    logger.info("Initializing RAGBot for Gradio interface...")
    logger.info(f"Model: {args.model}")
    logger.info(f"Vector DB: {args.vector_db_dir}")
    
    try:
        # Initialize bot
        bot = RAGBot(args)
        
        # Check if vector database exists and has documents
        collection_stats = bot.vector_retriever.get_collection_stats()
        if collection_stats.get('total_chunks', 0) == 0:
            logger.warning("Vector database is empty. You may need to run indexing first:")
            logger.warning("  python bot.py --data-dir './Data Resources' --vector-db-dir './chroma_db'")
            logger.warning("Continuing anyway - the chatbot will work but may not find relevant documents.")
        
        # Create and launch Gradio interface
        demo = create_interface(bot)
        
        # For local use, launch it
        # (On Spaces, the demo is already created at module level)
        logger.info(f"Launching Gradio interface on http://{args.server_name}:{args.server_port}")
        demo.launch(
            server_name=args.server_name,
            server_port=args.server_port,
            share=args.share
        )
        
    except KeyboardInterrupt:
        logger.info("Interrupted by user")
        sys.exit(0)
    except Exception as e:
        logger.error(f"Error launching Gradio app: {e}", exc_info=True)
        sys.exit(1)


# For Hugging Face Spaces: create demo at module level
# Following the HF Spaces pattern: create the Gradio app directly at module level
# Spaces will import this module and look for a Gradio Blocks/Interface object
# Pattern: demo = gr.Interface(...) or demo = gr.Blocks(...)
# DO NOT call demo.launch() - Spaces handles that automatically

# Check if we're on Spaces (be more permissive - check multiple env vars)
IS_SPACES = (
    os.getenv("SPACE_ID") is not None or 
    os.getenv("SYSTEM") == "spaces" or
    os.getenv("HF_SPACE_ID") is not None
)

# Create demo at module level (like HF docs example)
# Initialize demo variable to None first (safety measure)  
demo = None

# Create demo at module level (like HF docs example)
# This ensures Spaces can always find it when importing the module
try:
    if IS_SPACES:
        logger.info("Initializing for Hugging Face Spaces...")
    else:
        logger.info("Initializing for local execution...")
    
    # Initialize with default args
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='meta-llama/Llama-3.2-3B-Instruct')
    parser.add_argument('--vector-db-dir', default='./chroma_db')
    parser.add_argument('--data-dir', default='./Data Resources')
    parser.add_argument('--max-new-tokens', type=int, default=1024)
    parser.add_argument('--temperature', type=float, default=0.2)
    parser.add_argument('--top-p', type=float, default=0.9)
    parser.add_argument('--repetition-penalty', type=float, default=1.1)
    parser.add_argument('--k', type=int, default=5)
    parser.add_argument('--skip-indexing', action='store_true', default=True)
    parser.add_argument('--verbose', action='store_true', default=False)
    parser.add_argument('--share', action='store_true', default=False)
    parser.add_argument('--server-name', type=str, default='0.0.0.0')
    parser.add_argument('--server-port', type=int, default=7860)
    parser.add_argument('--seed', type=int, default=42)
    
    args = parser.parse_args([])  # Empty args
    args.skip_model_loading = IS_SPACES  # Skip model loading on Spaces, use Inference API
    
    # Create bot
    bot = RAGBot(args)
    
    if bot.vector_retriever is None:
        raise Exception("Vector database not available")
    
    # Create the demo interface directly at module level (like HF docs example)
    demo = create_interface(bot, use_inference_api=IS_SPACES)
    logger.info(f"Demo created successfully: {type(demo)}")
    # Explicitly verify it's a valid Gradio object
    if not isinstance(demo, (gr.Blocks, gr.Interface)):
        raise TypeError(f"Demo is not a valid Gradio object: {type(demo)}")
    logger.info("Demo validation passed - ready for Spaces")
except Exception as e:
    logger.error(f"Error creating demo: {e}", exc_info=True)
    import traceback
    logger.error(f"Traceback: {traceback.format_exc()}")
    # Create a fallback error demo so Spaces doesn't show blank
    with gr.Blocks() as demo:
        gr.Markdown(f"# Error Initializing Chatbot\n\nAn error occurred while initializing the chatbot.\n\nError: {str(e)}\n\nPlease check the logs for details.")
    logger.info(f"Error demo created: {type(demo)}")

# Final verification - ensure demo exists and is valid
if demo is None:
    logger.error("CRITICAL: Demo variable is None!")
    with gr.Blocks() as demo:
        gr.Markdown("# Error: Demo was not created properly\n\nPlease check the logs for details.")
elif not isinstance(demo, (gr.Blocks, gr.Interface)):
    logger.error(f"CRITICAL: Demo is not a valid Gradio object: {type(demo)}")
    with gr.Blocks() as demo:
        gr.Markdown(f"# Error: Invalid demo type\n\nDemo type: {type(demo)}\n\nPlease check the logs for details.")
else:
    logger.info(f"βœ… Final demo check passed: demo type={type(demo)}")
    # Explicit print to ensure demo is accessible (Spaces might check this)
    print(f"DEMO_VARIABLE_SET: {type(demo)}")

# For local execution only (not on Spaces)
if __name__ == "__main__":
    if not IS_SPACES:
        main()