Spaces:
Runtime error
Runtime error
| import spaces | |
| import os | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from huggingface_hub import login | |
| # Get the Hugging Face token from environment variables | |
| huggingface_token = os.getenv("HF_TOKEN") | |
| if huggingface_token is None: | |
| raise ValueError("Hugging Face token not set. Please set the HUGGINGFACE_HUB_TOKEN environment variable.") | |
| # Login using the Hugging Face token | |
| login(huggingface_token) | |
| # Load the model and tokenizer | |
| model_name = "meta-llama/Meta-Llama-3.1-8B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| # Move the model to GPU if available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| # Request GPU resources for 120 seconds | |
| # Define the prediction function | |
| def predict(input_text, temperature=0.2): | |
| try: | |
| inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
| outputs = model.generate(inputs, temperature=temperature, max_new_tokens=50) | |
| prediction = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return prediction | |
| except Exception as e: | |
| return str(e) | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text"), | |
| gr.Slider(minimum=0, maximum=1, value=0.2, label="Temperature") | |
| ], | |
| outputs=gr.Textbox(label="Output Text"), | |
| title="Transformer Model Prediction", | |
| description="Enter text and adjust the temperature to get predictions from the transformer model." | |
| ) | |
| # Launch the Gradio app | |
| interface.launch(server_name="0.0.0.0", server_port=7860) |