Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| import json | |
| css = ''' | |
| .gradio-container{max-width: 1000px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| # Access token for Hugging Face | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| # Initialize the client for the OpenAI model | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| api_key=ACCESS_TOKEN, | |
| ) | |
| # File path for storing user preferences | |
| USER_DATA_PATH = "user_data.json" | |
| # Load user preferences if they exist | |
| def load_user_preferences(): | |
| if os.path.exists(USER_DATA_PATH): | |
| with open(USER_DATA_PATH, "r") as file: | |
| return json.load(file) | |
| return {} | |
| # Save user preferences | |
| def save_user_preferences(data): | |
| with open(USER_DATA_PATH, "w") as file: | |
| json.dump(data, file) | |
| # Respond function that generates the assistant's reply | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Load user preferences | |
| user_data = load_user_preferences() | |
| # Custom welcome message or save user input | |
| if message.lower().startswith("my name is"): | |
| user_data["name"] = message.split("is")[-1].strip() | |
| save_user_preferences(user_data) | |
| response = f"Nice to meet you, {user_data['name']}! How can I assist you with your travel plans today?" | |
| yield response | |
| return | |
| if message.lower().startswith("i like to travel to"): | |
| user_data["favorite_destination"] = message.split("to")[-1].strip() | |
| save_user_preferences(user_data) | |
| response = f"Got it! I noted that you enjoy traveling to {user_data['favorite_destination']}." | |
| yield response | |
| return | |
| if message.lower().startswith("my budget is"): | |
| user_data["budget"] = message.split("is")[-1].strip() | |
| save_user_preferences(user_data) | |
| response = f"Understood! I'll keep your budget of {user_data['budget']} in mind when suggesting travel options." | |
| yield response | |
| return | |
| # Use user's name and preferences in responses if available | |
| name = user_data.get("name", "Traveler") | |
| favorite_destination = user_data.get("favorite_destination", "various places") | |
| budget = user_data.get("budget", "not specified") | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| # Add the current user message | |
| messages.append({"role": "user", "content": message}) | |
| response = f"Hello {name}! You mentioned you like traveling to {favorite_destination}. Let's plan something exciting within your budget of {budget}.\n" | |
| # Generate a response using the OpenAI client | |
| for message in client.chat.completions.create( | |
| model="meta-llama/Meta-Llama-3.1-8B-Instruct", | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| messages=messages, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| # Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a friendly travel assistant. Offer personalized travel tips and remember user preferences.", | |
| label="System message" | |
| ), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-P", | |
| ), | |
| ], | |
| css=css, | |
| theme="allenai/gradio-theme", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |