|
|
import gradio as gr
|
|
|
import torch
|
|
|
from PIL import Image
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
import spaces
|
|
|
|
|
|
|
|
|
MID = "apple/FastVLM-0.5B"
|
|
|
IMAGE_TOKEN_INDEX = -200
|
|
|
|
|
|
|
|
|
tok = None
|
|
|
model = None
|
|
|
|
|
|
def load_model():
|
|
|
global tok, model
|
|
|
if tok is None or model is None:
|
|
|
print("Loading model...")
|
|
|
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
MID,
|
|
|
torch_dtype=torch.float16,
|
|
|
device_map="cuda",
|
|
|
trust_remote_code=True,
|
|
|
)
|
|
|
print("Model loaded successfully!")
|
|
|
return tok, model
|
|
|
|
|
|
@spaces.GPU(duration=60)
|
|
|
def caption_image(image, custom_prompt=None):
|
|
|
"""
|
|
|
Generate a caption for the input image.
|
|
|
|
|
|
Args:
|
|
|
image: PIL Image from Gradio
|
|
|
custom_prompt: Optional custom prompt to use instead of default
|
|
|
|
|
|
Returns:
|
|
|
Generated caption text
|
|
|
"""
|
|
|
if image is None:
|
|
|
return "Please upload an image first."
|
|
|
|
|
|
try:
|
|
|
|
|
|
tok, model = load_model()
|
|
|
|
|
|
if image.mode != "RGB":
|
|
|
image = image.convert("RGB")
|
|
|
|
|
|
|
|
|
prompt = custom_prompt if custom_prompt else "Describe this image in detail."
|
|
|
|
|
|
|
|
|
messages = [
|
|
|
{"role": "user", "content": f"<image>\n{prompt}"}
|
|
|
]
|
|
|
|
|
|
|
|
|
rendered = tok.apply_chat_template(
|
|
|
messages, add_generation_prompt=True, tokenize=False
|
|
|
)
|
|
|
|
|
|
|
|
|
pre, post = rendered.split("<image>", 1)
|
|
|
|
|
|
|
|
|
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
|
|
|
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
|
|
|
|
|
|
|
|
|
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
|
|
|
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
|
|
|
attention_mask = torch.ones_like(input_ids, device=model.device)
|
|
|
|
|
|
|
|
|
px = model.get_vision_tower().image_processor(
|
|
|
images=image, return_tensors="pt"
|
|
|
)["pixel_values"]
|
|
|
px = px.to(model.device, dtype=model.dtype)
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
out = model.generate(
|
|
|
inputs=input_ids,
|
|
|
attention_mask=attention_mask,
|
|
|
images=px,
|
|
|
max_new_tokens=128,
|
|
|
do_sample=False,
|
|
|
temperature=1.0,
|
|
|
)
|
|
|
|
|
|
|
|
|
generated_text = tok.decode(out[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
if "assistant" in generated_text:
|
|
|
response = generated_text.split("assistant")[-1].strip()
|
|
|
else:
|
|
|
response = generated_text
|
|
|
|
|
|
return response
|
|
|
|
|
|
except Exception as e:
|
|
|
return f"Error generating caption: {str(e)}"
|
|
|
|
|
|
|
|
|
with gr.Blocks(title="FastVLM Image Captioning") as demo:
|
|
|
gr.Markdown(
|
|
|
"""
|
|
|
# 🖼️ FastVLM Image Captioning
|
|
|
|
|
|
Upload an image to generate a detailed caption using Apple's FastVLM-0.5B model.
|
|
|
You can use the default prompt or provide your own custom prompt.
|
|
|
"""
|
|
|
)
|
|
|
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
image_input = gr.Image(
|
|
|
type="pil",
|
|
|
label="Upload Image",
|
|
|
elem_id="image-upload"
|
|
|
)
|
|
|
|
|
|
custom_prompt = gr.Textbox(
|
|
|
label="Custom Prompt (Optional)",
|
|
|
placeholder="Leave empty for default: 'Describe this image in detail.'",
|
|
|
lines=2
|
|
|
)
|
|
|
|
|
|
with gr.Row():
|
|
|
clear_btn = gr.ClearButton([image_input, custom_prompt])
|
|
|
generate_btn = gr.Button("Generate Caption", variant="primary")
|
|
|
|
|
|
with gr.Column():
|
|
|
output = gr.Textbox(
|
|
|
label="Generated Caption",
|
|
|
lines=8,
|
|
|
max_lines=15,
|
|
|
show_copy_button=True
|
|
|
)
|
|
|
|
|
|
|
|
|
generate_btn.click(
|
|
|
fn=caption_image,
|
|
|
inputs=[image_input, custom_prompt],
|
|
|
outputs=output
|
|
|
)
|
|
|
|
|
|
|
|
|
image_input.change(
|
|
|
fn=lambda img, prompt: caption_image(img, prompt) if img is not None and not prompt else None,
|
|
|
inputs=[image_input, custom_prompt],
|
|
|
outputs=output
|
|
|
)
|
|
|
|
|
|
gr.Markdown(
|
|
|
"""
|
|
|
---
|
|
|
**Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
|
|
|
|
|
|
**Note:** This Space uses ZeroGPU for dynamic GPU allocation.
|
|
|
"""
|
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
demo.launch(
|
|
|
share=False,
|
|
|
show_error=True,
|
|
|
server_name="0.0.0.0",
|
|
|
server_port=7860
|
|
|
) |