Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pickle
|
| 3 |
+
import string
|
| 4 |
+
from nltk.corpus import stopwords
|
| 5 |
+
import nltk
|
| 6 |
+
from nltk.stem.porter import PorterStemmer
|
| 7 |
+
ps = PorterStemmer()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Function to preprocess the input text
|
| 11 |
+
def transform_text(text):
|
| 12 |
+
text = text.lower() # Convert to lowercase
|
| 13 |
+
text = nltk.word_tokenize(text) # Tokenize the text
|
| 14 |
+
y = []
|
| 15 |
+
|
| 16 |
+
# Removing alphanumeric tokens
|
| 17 |
+
for i in text:
|
| 18 |
+
if i.isalnum():
|
| 19 |
+
y.append(i)
|
| 20 |
+
|
| 21 |
+
text = y[:]
|
| 22 |
+
y.clear()
|
| 23 |
+
|
| 24 |
+
# Removing stopwords and punctuation
|
| 25 |
+
for i in text:
|
| 26 |
+
if i not in stopwords.words('english') and i not in string.punctuation:
|
| 27 |
+
y.append(i)
|
| 28 |
+
|
| 29 |
+
text = y[:]
|
| 30 |
+
y.clear()
|
| 31 |
+
|
| 32 |
+
# Performing stemming
|
| 33 |
+
for i in text:
|
| 34 |
+
y.append(ps.stem(i))
|
| 35 |
+
|
| 36 |
+
return " ".join(y) # Join the list into a single string with spaces
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Load the saved models (TF-IDF Vectorizer and the classification model)
|
| 40 |
+
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
|
| 41 |
+
model = pickle.load(open('model.pkl', 'rb'))
|
| 42 |
+
|
| 43 |
+
# Setting up the main title and description
|
| 44 |
+
st.title("π§ Email/SMS Spam Classifier")
|
| 45 |
+
st.write("""
|
| 46 |
+
### Enter a message to determine whether it's Spam or Not Spam.
|
| 47 |
+
This classifier uses **natural language processing (NLP)** techniques to preprocess and predict based on your input.
|
| 48 |
+
""")
|
| 49 |
+
|
| 50 |
+
# Input text field for user to enter the message
|
| 51 |
+
st.write("#### Message Input:")
|
| 52 |
+
input_sms = st.text_area("Type or paste your message here", height=150)
|
| 53 |
+
|
| 54 |
+
# Add a button to trigger the classification
|
| 55 |
+
if st.button("π Classify Message"):
|
| 56 |
+
if input_sms.strip(): # Ensure there's text in the input
|
| 57 |
+
## 1. Preprocess the input text
|
| 58 |
+
with st.spinner('Processing...'):
|
| 59 |
+
transformed_sms = transform_text(input_sms)
|
| 60 |
+
|
| 61 |
+
## 2. Vectorize the transformed text
|
| 62 |
+
vector_input = tfidf.transform([transformed_sms])
|
| 63 |
+
|
| 64 |
+
## 3. Predict the label (Spam or Not Spam)
|
| 65 |
+
result = model.predict(vector_input)[0]
|
| 66 |
+
|
| 67 |
+
## 4. Display the result with appropriate color and message
|
| 68 |
+
if result == 1:
|
| 69 |
+
st.success("π΄ This message is classified as **Spam**.")
|
| 70 |
+
else:
|
| 71 |
+
st.success("π’ This message is classified as **Not Spam**.")
|
| 72 |
+
else:
|
| 73 |
+
st.warning("Please enter a valid message to classify.")
|
| 74 |
+
|
| 75 |
+
# Adding a footer with a reference to your classifier and author
|
| 76 |
+
st.markdown("""
|
| 77 |
+
---
|
| 78 |
+
Developed using **Streamlit** and **NLP techniques**.<br>
|
| 79 |
+
**Author**: **Aditya Yadav**
|
| 80 |
+
""", unsafe_allow_html=True)
|