Spaces:
Sleeping
Sleeping
Create all-mpnet-base-v2
Browse files
sentence-transformers/all-mpnet-base-v2
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Untitled8.ipynb
|
| 3 |
+
Automatically generated by Colab.
|
| 4 |
+
Original file is located at
|
| 5 |
+
https://colab.research.google.com/drive/1JMKmuuP0equrOr6l6oQVQbpbBnGTGvcc
|
| 6 |
+
"""
|
| 7 |
+
!pip install sentence-transformers
|
| 8 |
+
from google.colab import files
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import random
|
| 11 |
+
uploaded = files.upload()
|
| 12 |
+
file_name = list(uploaded.keys())[0]
|
| 13 |
+
df = pd.read_csv(file_name)
|
| 14 |
+
|
| 15 |
+
# Preview
|
| 16 |
+
print("π Preview of training data:")
|
| 17 |
+
print(df.head())
|
| 18 |
+
print(f"\nβ
Loaded {len(df)} training pairs.")
|
| 19 |
+
from sentence_transformers import InputExample
|
| 20 |
+
train_examples = [
|
| 21 |
+
InputExample(texts=[row["text1"], row["text2"]], label=float(row["score"]))
|
| 22 |
+
for _, row in df.iterrows()
|
| 23 |
+
]
|
| 24 |
+
from sentence_transformers import SentenceTransformer, losses
|
| 25 |
+
from torch.utils.data import DataLoader
|
| 26 |
+
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
| 27 |
+
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)
|
| 28 |
+
train_loss = losses.CosineSimilarityLoss(model)
|
| 29 |
+
model.fit(
|
| 30 |
+
train_objectives=[(train_dataloader, train_loss)],
|
| 31 |
+
epochs=1, # Increase to 3β5 for better results
|
| 32 |
+
warmup_steps=10, # Usually 10% of steps per epoch
|
| 33 |
+
output_path="fine-tuned-mpnet-model"
|
| 34 |
+
)
|
| 35 |
+
from sentence_transformers import SentenceTransformer
|
| 36 |
+
model = SentenceTransformer("fine-tuned-mpnet-model")
|
| 37 |
+
sentence = "This is a test sentence."
|
| 38 |
+
embedding = model.encode(sentence)
|
| 39 |
+
print(embedding.shape)
|
| 40 |
+
fine_tuned_model = SentenceTransformer("fine-tuned-mpnet-model")
|
| 41 |
+
|
| 42 |
+
# Example usage
|
| 43 |
+
embedding = fine_tuned_model.encode("This is a test sentence.")
|
| 44 |
+
print("π’ Embedding shape:", embedding.shape)
|
| 45 |
+
import os
|
| 46 |
+
print(os.listdir("fine-tuned-mpnet-model"))
|
| 47 |
+
from sentence_transformers import SentenceTransformer
|
| 48 |
+
from sentence_transformers.util import cos_sim
|
| 49 |
+
# Load base and fine-tuned models
|
| 50 |
+
base_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
| 51 |
+
ft_model = SentenceTransformer("fine-tuned-mpnet-model")
|
| 52 |
+
from sentence_transformers import SentenceTransformer
|
| 53 |
+
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
|
| 54 |
+
from torch.utils.data import DataLoader
|
| 55 |
+
fine_tuned_model = SentenceTransformer("fine-tuned-mpnet-model")
|
| 56 |
+
sentence = "This is a test sentence."
|
| 57 |
+
embedding = fine_tuned_model.encode(sentence)
|
| 58 |
+
print("π’ Embedding shape:", embedding.shape)
|
| 59 |
+
|
| 60 |
+
"""You can now use the `fine_tuned_model` to generate embeddings for any text data. For example, you can use these embeddings for tasks like semantic search, clustering, or classification."""
|
| 61 |
+
|
| 62 |
+
from tqdm import tqdm
|
| 63 |
+
import numpy as np
|
| 64 |
+
from sentence_transformers.util import cos_sim
|
| 65 |
+
from sklearn.metrics import mean_squared_error
|
| 66 |
+
from scipy.stats import spearmanr
|
| 67 |
+
def evaluate_model(model, name):
|
| 68 |
+
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
|
| 69 |
+
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
|
| 70 |
+
similarities = cos_sim(embeddings1, embeddings2).diagonal().cpu().numpy()
|
| 71 |
+
mse = mean_squared_error(true_scores, similarities)
|
| 72 |
+
spearman_corr, _ = spearmanr(true_scores, similarities)
|
| 73 |
+
print(f"\nπ Evaluation: {name}")
|
| 74 |
+
print(f"π CosineSim vs Human Scores: ")
|
| 75 |
+
print(f" β’ MSE: {mse:.4f}")
|
| 76 |
+
print(f" β’ Spearman R: {spearman_corr:.4f}")
|
| 77 |
+
return similarities
|
| 78 |
+
# Extract sentences and scores from the DataFrame
|
| 79 |
+
sentences1 = df['text1'].tolist()
|
| 80 |
+
sentences2 = df['text2'].tolist()
|
| 81 |
+
true_scores = df['score'].tolist()
|
| 82 |
+
# Evaluate both models
|
| 83 |
+
_ = evaluate_model(base_model, "Base MPNET")
|
| 84 |
+
_ = evaluate_model(ft_model, "Fine-Tuned MPNET")
|