File size: 2,028 Bytes
84d7244
 
 
d67e138
84d7244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from models.SpaTrackV2.models.predictor import Predictor
from models.SpaTrackV2.models.vggt4track.models.vggt_moe import VGGT4Track
import logging
from .config import (
    TTM_COG_AVAILABLE, TTM_WAN_AVAILABLE,
    TTM_COG_MODEL_ID, TTM_WAN_MODEL_ID, TTM_DTYPE
)

logger = logging.getLogger(__name__)

vggt4track_model = None
tracker_model = None
ttm_cog_pipeline = None
ttm_wan_pipeline = None


def init_spatial_models():
    global vggt4track_model, tracker_model
    print("🚀 Initializing models...")
    vggt4track_model = VGGT4Track.from_pretrained(
        "Yuxihenry/SpatialTrackerV2_Front")
    vggt4track_model.eval()
    vggt4track_model = vggt4track_model.to("cuda")

    tracker_model = Predictor.from_pretrained(
        "Yuxihenry/SpatialTrackerV2-Offline")
    tracker_model.eval()
    print("✅ Spatial Models loaded successfully!")


def get_ttm_cog_pipeline():
    global ttm_cog_pipeline
    if ttm_cog_pipeline is None and TTM_COG_AVAILABLE:
        from diffusers import CogVideoXImageToVideoPipeline
        logger.info("Loading TTM CogVideoX pipeline...")
        ttm_cog_pipeline = CogVideoXImageToVideoPipeline.from_pretrained(
            TTM_COG_MODEL_ID,
            torch_dtype=TTM_DTYPE,
            low_cpu_mem_usage=True,
        )
        ttm_cog_pipeline.vae.enable_tiling()
        ttm_cog_pipeline.vae.enable_slicing()
        logger.info("TTM CogVideoX pipeline loaded successfully!")
    return ttm_cog_pipeline


def get_ttm_wan_pipeline():
    global ttm_wan_pipeline
    if ttm_wan_pipeline is None and TTM_WAN_AVAILABLE:
        from diffusers import WanImageToVideoPipeline
        logger.info("Loading TTM Wan 2.2 pipeline...")
        ttm_wan_pipeline = WanImageToVideoPipeline.from_pretrained(
            TTM_WAN_MODEL_ID,
            torch_dtype=TTM_DTYPE,
        )
        ttm_wan_pipeline.vae.enable_tiling()
        ttm_wan_pipeline.vae.enable_slicing()
        logger.info("TTM Wan 2.2 pipeline loaded successfully!")
    return ttm_wan_pipeline


init_spatial_models()