Spaces:
Running
on
Zero
Running
on
Zero
File size: 63,550 Bytes
c43f53b 84d7244 3832d26 c8d9d42 3832d26 c8dc4de c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b c8dc4de c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b c8d9d42 c43f53b d95e919 c43f53b d95e919 c5f0cbf 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b c8d9d42 3832d26 c43f53b 3832d26 c43f53b 3832d26 c43f53b d95e919 c43f53b 949323a c43f53b 3832d26 c43f53b c8d9d42 3832d26 d95e919 c43f53b 949323a c43f53b c8d9d42 3832d26 d95e919 c43f53b 3832d26 d95e919 c43f53b 949323a c43f53b d95e919 3832d26 c43f53b c8d9d42 c43f53b c5f0cbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 |
import sys
import gradio as gr
import os
import numpy as np
import cv2
import time
import shutil
from pathlib import Path
from einops import rearrange
from typing import Union
# Force unbuffered output for HF Spaces logs
os.environ['PYTHONUNBUFFERED'] = '1'
# Configure logging FIRST before any other imports
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
logger.info("=" * 50)
logger.info("Starting application initialization...")
logger.info("=" * 50)
sys.stdout.flush()
try:
import spaces
logger.info("✅ HF Spaces module imported successfully")
except ImportError:
logger.warning("⚠️ HF Spaces module not available, using mock")
class spaces:
@staticmethod
def GPU(func=None, duration=None):
def decorator(f):
return f
return decorator if func is None else func
sys.stdout.flush()
logger.info("Importing torch...")
sys.stdout.flush()
import torch
logger.info(f"✅ Torch imported. Version: {torch.__version__}, CUDA available: {torch.cuda.is_available()}")
sys.stdout.flush()
import torch.nn.functional as F
import torchvision.transforms as T
from concurrent.futures import ThreadPoolExecutor
import atexit
import uuid
logger.info("Importing decord...")
sys.stdout.flush()
import decord
logger.info("✅ Decord imported successfully")
sys.stdout.flush()
from PIL import Image
logger.info("Importing SpaTrack models...")
sys.stdout.flush()
try:
from models.SpaTrackV2.models.vggt4track.models.vggt_moe import VGGT4Track
from models.SpaTrackV2.models.vggt4track.utils.load_fn import preprocess_image
from models.SpaTrackV2.models.predictor import Predictor
from models.SpaTrackV2.models.utils import get_points_on_a_grid
logger.info("✅ SpaTrack models imported successfully")
except Exception as e:
logger.error(f"❌ Failed to import SpaTrack models: {e}")
raise
sys.stdout.flush()
# TTM imports (optional - will be loaded on demand)
logger.info("Checking TTM (diffusers) availability...")
sys.stdout.flush()
TTM_COG_AVAILABLE = False
TTM_WAN_AVAILABLE = False
try:
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
TTM_COG_AVAILABLE = True
logger.info("✅ CogVideoX TTM available")
except ImportError as e:
logger.info(f"ℹ️ CogVideoX TTM not available: {e}")
sys.stdout.flush()
try:
from diffusers import AutoencoderKLWan, WanTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline, retrieve_latents
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
if not TTM_COG_AVAILABLE:
from diffusers.utils import export_to_video, load_image
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
TTM_WAN_AVAILABLE = True
logger.info("✅ Wan TTM available")
except ImportError as e:
logger.info(f"ℹ️ Wan TTM not available: {e}")
sys.stdout.flush()
TTM_AVAILABLE = TTM_COG_AVAILABLE or TTM_WAN_AVAILABLE
if not TTM_AVAILABLE:
logger.warning("⚠️ Diffusers not available. TTM features will be disabled.")
else:
logger.info(f"TTM Status - CogVideoX: {TTM_COG_AVAILABLE}, Wan: {TTM_WAN_AVAILABLE}")
sys.stdout.flush()
# Constants
MAX_FRAMES = 80
OUTPUT_FPS = 24
RENDER_WIDTH = 512
RENDER_HEIGHT = 384
# Camera movement types
CAMERA_MOVEMENTS = [
"static",
"move_forward",
"move_backward",
"move_left",
"move_right",
"move_up",
"move_down"
]
# TTM Constants
TTM_COG_MODEL_ID = "THUDM/CogVideoX-5b-I2V"
TTM_WAN_MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
TTM_DTYPE = torch.bfloat16
TTM_DEFAULT_NUM_FRAMES = 49
TTM_DEFAULT_NUM_INFERENCE_STEPS = 50
# TTM Model choices
TTM_MODELS = []
if TTM_COG_AVAILABLE:
TTM_MODELS.append("CogVideoX-5B")
if TTM_WAN_AVAILABLE:
TTM_MODELS.append("Wan2.2-14B (Recommended)")
# Global model instances (lazy loaded for HF Spaces GPU compatibility)
vggt4track_model = None
tracker_model = None
ttm_cog_pipeline = None
ttm_wan_pipeline = None
MODELS_LOADED = False
def load_video_to_tensor(video_path: str) -> torch.Tensor:
"""Returns a video tensor from a video file. shape [1, C, T, H, W], [0, 1] range."""
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
frames = np.array(frames)
video_tensor = torch.tensor(frames)
video_tensor = video_tensor.permute(0, 3, 1, 2).float() / 255.0
video_tensor = video_tensor.unsqueeze(0).permute(0, 2, 1, 3, 4)
return video_tensor
def get_ttm_cog_pipeline():
"""Lazy load CogVideoX TTM pipeline to save memory."""
global ttm_cog_pipeline
if ttm_cog_pipeline is None and TTM_COG_AVAILABLE:
logger.info("Loading TTM CogVideoX pipeline...")
ttm_cog_pipeline = CogVideoXImageToVideoPipeline.from_pretrained(
TTM_COG_MODEL_ID,
torch_dtype=TTM_DTYPE,
low_cpu_mem_usage=True,
)
ttm_cog_pipeline.vae.enable_tiling()
ttm_cog_pipeline.vae.enable_slicing()
logger.info("TTM CogVideoX pipeline loaded successfully!")
return ttm_cog_pipeline
def get_ttm_wan_pipeline():
"""Lazy load Wan TTM pipeline to save memory."""
global ttm_wan_pipeline
if ttm_wan_pipeline is None and TTM_WAN_AVAILABLE:
logger.info("Loading TTM Wan 2.2 pipeline...")
ttm_wan_pipeline = WanImageToVideoPipeline.from_pretrained(
TTM_WAN_MODEL_ID,
torch_dtype=TTM_DTYPE,
)
ttm_wan_pipeline.vae.enable_tiling()
ttm_wan_pipeline.vae.enable_slicing()
logger.info("TTM Wan 2.2 pipeline loaded successfully!")
return ttm_wan_pipeline
logger.info("Setting up thread pool and utility functions...")
sys.stdout.flush()
# Thread pool for delayed deletion
thread_pool_executor = ThreadPoolExecutor(max_workers=2)
def load_models():
"""Load models lazily when GPU is available (inside @spaces.GPU decorated function)."""
global vggt4track_model, tracker_model, MODELS_LOADED
if MODELS_LOADED:
logger.info("Models already loaded, skipping...")
return
logger.info("🚀 Starting model loading...")
sys.stdout.flush()
try:
logger.info("Loading VGGT4Track model from 'Yuxihenry/SpatialTrackerV2_Front'...")
sys.stdout.flush()
vggt4track_model = VGGT4Track.from_pretrained("Yuxihenry/SpatialTrackerV2_Front")
vggt4track_model.eval()
logger.info("✅ VGGT4Track model loaded, moving to CUDA...")
sys.stdout.flush()
vggt4track_model = vggt4track_model.to("cuda")
logger.info("✅ VGGT4Track model on CUDA")
sys.stdout.flush()
logger.info("Loading Predictor model from 'Yuxihenry/SpatialTrackerV2-Offline'...")
sys.stdout.flush()
tracker_model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Offline")
tracker_model.eval()
logger.info("✅ Predictor model loaded")
sys.stdout.flush()
MODELS_LOADED = True
logger.info("✅ All models loaded successfully!")
sys.stdout.flush()
except Exception as e:
logger.error(f"❌ Failed to load models: {e}")
import traceback
traceback.print_exc()
sys.stdout.flush()
raise
def delete_later(path: Union[str, os.PathLike], delay: int = 600):
"""Delete file or directory after specified delay"""
def _delete():
try:
if os.path.isfile(path):
os.remove(path)
elif os.path.isdir(path):
shutil.rmtree(path)
except Exception as e:
logger.warning(f"Failed to delete {path}: {e}")
def _wait_and_delete():
time.sleep(delay)
_delete()
thread_pool_executor.submit(_wait_and_delete)
atexit.register(_delete)
def create_user_temp_dir():
"""Create a unique temporary directory for each user session"""
session_id = str(uuid.uuid4())[:8]
temp_dir = os.path.join("temp_local", f"session_{session_id}")
os.makedirs(temp_dir, exist_ok=True)
delete_later(temp_dir, delay=600)
return temp_dir
# Note: Models are loaded lazily inside @spaces.GPU decorated functions
# This is required for HF Spaces ZeroGPU compatibility
logger.info("Models will be loaded lazily when GPU is available")
sys.stdout.flush()
logger.info("Setting up Gradio static paths...")
gr.set_static_paths(paths=[Path.cwd().absolute()/"_viz"])
logger.info("✅ Static paths configured")
sys.stdout.flush()
def generate_camera_trajectory(num_frames: int, movement_type: str,
base_intrinsics: np.ndarray,
scene_scale: float = 1.0) -> tuple:
"""
Generate camera extrinsics for different movement types.
Returns:
extrinsics: (T, 4, 4) camera-to-world matrices
"""
# Movement speed (adjust based on scene scale)
speed = scene_scale * 0.02
extrinsics = np.zeros((num_frames, 4, 4), dtype=np.float32)
for t in range(num_frames):
# Start with identity matrix
ext = np.eye(4, dtype=np.float32)
progress = t / max(num_frames - 1, 1)
if movement_type == "static":
pass # Keep identity
elif movement_type == "move_forward":
# Move along -Z (forward in OpenGL convention)
ext[2, 3] = -speed * t
elif movement_type == "move_backward":
ext[2, 3] = speed * t # Move along +Z
elif movement_type == "move_left":
ext[0, 3] = -speed * t # Move along -X
elif movement_type == "move_right":
ext[0, 3] = speed * t # Move along +X
elif movement_type == "move_up":
ext[1, 3] = -speed * t # Move along -Y (up in OpenGL)
elif movement_type == "move_down":
ext[1, 3] = speed * t # Move along +Y
extrinsics[t] = ext
return extrinsics
def render_from_pointcloud(rgb_frames: np.ndarray,
depth_frames: np.ndarray,
intrinsics: np.ndarray,
original_extrinsics: np.ndarray,
new_extrinsics: np.ndarray,
output_path: str,
fps: int = 24,
generate_ttm_inputs: bool = False) -> dict:
"""
Render video from point cloud with new camera trajectory.
Args:
rgb_frames: (T, H, W, 3) RGB frames
depth_frames: (T, H, W) depth maps
intrinsics: (T, 3, 3) camera intrinsics
original_extrinsics: (T, 4, 4) original camera extrinsics (world-to-camera)
new_extrinsics: (T, 4, 4) new camera extrinsics for rendering
output_path: path to save rendered video
fps: output video fps
generate_ttm_inputs: if True, also generate motion_signal.mp4 and mask.mp4 for TTM
Returns:
dict with paths: {'rendered': path, 'motion_signal': path or None, 'mask': path or None}
"""
T, H, W, _ = rgb_frames.shape
# Setup video writers
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (W, H))
# TTM outputs: motion_signal (warped with NN inpainting) and mask (valid pixels before inpainting)
motion_signal_path = None
mask_path = None
out_motion_signal = None
out_mask = None
if generate_ttm_inputs:
base_dir = os.path.dirname(output_path)
motion_signal_path = os.path.join(base_dir, "motion_signal.mp4")
mask_path = os.path.join(base_dir, "mask.mp4")
out_motion_signal = cv2.VideoWriter(
motion_signal_path, fourcc, fps, (W, H))
out_mask = cv2.VideoWriter(mask_path, fourcc, fps, (W, H))
# Create meshgrid for pixel coordinates
u, v = np.meshgrid(np.arange(W), np.arange(H))
ones = np.ones_like(u)
for t in range(T):
# Get current frame data
rgb = rgb_frames[t]
depth = depth_frames[t]
K = intrinsics[t]
# Original camera pose (camera-to-world)
orig_c2w = np.linalg.inv(original_extrinsics[t])
# New camera pose (camera-to-world for the new viewpoint)
# Apply the new extrinsics relative to the first frame
if t == 0:
base_c2w = orig_c2w.copy()
# New camera is: base_c2w @ new_extrinsics[t]
new_c2w = base_c2w @ new_extrinsics[t]
new_w2c = np.linalg.inv(new_c2w)
# Unproject pixels to 3D points
K_inv = np.linalg.inv(K)
# Pixel coordinates to normalized camera coordinates
pixels = np.stack([u, v, ones], axis=-1).reshape(-1, 3) # (H*W, 3)
rays_cam = (K_inv @ pixels.T).T # (H*W, 3)
# Scale by depth to get 3D points in original camera frame
depth_flat = depth.reshape(-1, 1)
points_cam = rays_cam * depth_flat # (H*W, 3)
# Transform to world coordinates
points_world = (orig_c2w[:3, :3] @ points_cam.T).T + orig_c2w[:3, 3]
# Transform to new camera coordinates
points_new_cam = (new_w2c[:3, :3] @ points_world.T).T + new_w2c[:3, 3]
# Project to new image
points_proj = (K @ points_new_cam.T).T
# Get pixel coordinates
z = points_proj[:, 2:3]
z = np.clip(z, 1e-6, None) # Avoid division by zero
uv_new = points_proj[:, :2] / z
# Create output image using forward warping with z-buffer
rendered = np.zeros((H, W, 3), dtype=np.uint8)
z_buffer = np.full((H, W), np.inf, dtype=np.float32)
colors = rgb.reshape(-1, 3)
depths_new = points_new_cam[:, 2]
for i in range(len(uv_new)):
uu, vv = int(round(uv_new[i, 0])), int(round(uv_new[i, 1]))
if 0 <= uu < W and 0 <= vv < H and depths_new[i] > 0:
if depths_new[i] < z_buffer[vv, uu]:
z_buffer[vv, uu] = depths_new[i]
rendered[vv, uu] = colors[i]
# Create valid pixel mask BEFORE hole filling (for TTM)
# Valid pixels are those that received projected colors
valid_mask = (rendered.sum(axis=-1) > 0).astype(np.uint8) * 255
# Nearest-neighbor hole filling using dilation
# This is the inpainting method described in TTM: "Missing regions are inpainted by nearest-neighbor color assignment"
motion_signal_frame = rendered.copy()
hole_mask = (motion_signal_frame.sum(axis=-1) == 0).astype(np.uint8)
if hole_mask.sum() > 0:
kernel = np.ones((3, 3), np.uint8)
# Iteratively dilate to fill holes with nearest neighbor colors
max_iterations = max(H, W) # Ensure all holes can be filled
for _ in range(max_iterations):
if hole_mask.sum() == 0:
break
dilated = cv2.dilate(motion_signal_frame, kernel, iterations=1)
motion_signal_frame = np.where(
hole_mask[:, :, None] > 0, dilated, motion_signal_frame)
hole_mask = (motion_signal_frame.sum(
axis=-1) == 0).astype(np.uint8)
# Write TTM outputs if enabled
if generate_ttm_inputs:
# Motion signal: warped frame with NN inpainting
motion_signal_bgr = cv2.cvtColor(
motion_signal_frame, cv2.COLOR_RGB2BGR)
out_motion_signal.write(motion_signal_bgr)
# Mask: binary mask of valid (projected) pixels - white where valid, black where holes
mask_frame = np.stack(
[valid_mask, valid_mask, valid_mask], axis=-1)
out_mask.write(mask_frame)
# For the rendered output, use the same inpainted result
rendered_bgr = cv2.cvtColor(motion_signal_frame, cv2.COLOR_RGB2BGR)
out.write(rendered_bgr)
out.release()
if generate_ttm_inputs:
out_motion_signal.release()
out_mask.release()
return {
'rendered': output_path,
'motion_signal': motion_signal_path,
'mask': mask_path
}
@spaces.GPU(duration=180)
def run_spatial_tracker(video_tensor: torch.Tensor):
"""
GPU-intensive spatial tracking function.
Args:
video_tensor: Preprocessed video tensor (T, C, H, W)
Returns:
Dictionary containing tracking results
"""
global vggt4track_model, tracker_model
logger.info("run_spatial_tracker: Starting GPU execution...")
sys.stdout.flush()
# Load models if not already loaded (lazy loading for HF Spaces)
load_models()
logger.info("run_spatial_tracker: Preprocessing video input...")
sys.stdout.flush()
# Run VGGT to get depth and camera poses
video_input = preprocess_image(video_tensor)[None].cuda()
logger.info("run_spatial_tracker: Running VGGT inference...")
sys.stdout.flush()
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
predictions = vggt4track_model(video_input / 255)
extrinsic = predictions["poses_pred"]
intrinsic = predictions["intrs"]
depth_map = predictions["points_map"][..., 2]
depth_conf = predictions["unc_metric"]
logger.info("run_spatial_tracker: VGGT inference complete")
sys.stdout.flush()
depth_tensor = depth_map.squeeze().cpu().numpy()
extrs = extrinsic.squeeze().cpu().numpy()
intrs = intrinsic.squeeze().cpu().numpy()
video_tensor_gpu = video_input.squeeze()
unc_metric = depth_conf.squeeze().cpu().numpy() > 0.5
# Setup tracker
logger.info("run_spatial_tracker: Setting up tracker...")
sys.stdout.flush()
tracker_model.spatrack.track_num = 512
tracker_model.to("cuda")
# Get grid points for tracking
frame_H, frame_W = video_tensor_gpu.shape[2:]
grid_pts = get_points_on_a_grid(30, (frame_H, frame_W), device="cpu")
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[
0].numpy()
logger.info("run_spatial_tracker: Running 3D tracker...")
sys.stdout.flush()
# Run tracker
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
(
c2w_traj, intrs_out, point_map, conf_depth,
track3d_pred, track2d_pred, vis_pred, conf_pred, video_out
) = tracker_model.forward(
video_tensor_gpu, depth=depth_tensor,
intrs=intrs, extrs=extrs,
queries=query_xyt,
fps=1, full_point=False, iters_track=4,
query_no_BA=True, fixed_cam=False, stage=1,
unc_metric=unc_metric,
support_frame=len(video_tensor_gpu)-1, replace_ratio=0.2
)
# Resize outputs for rendering
max_size = 384
h, w = video_out.shape[2:]
scale = min(max_size / h, max_size / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video_out = T.Resize((new_h, new_w))(video_out)
point_map = T.Resize((new_h, new_w))(point_map)
conf_depth = T.Resize((new_h, new_w))(conf_depth)
intrs_out[:, :2, :] = intrs_out[:, :2, :] * scale
logger.info("run_spatial_tracker: Moving results to CPU...")
sys.stdout.flush()
# Move results to CPU and return
result = {
'video_out': video_out.cpu(),
'point_map': point_map.cpu(),
'conf_depth': conf_depth.cpu(),
'intrs_out': intrs_out.cpu(),
'c2w_traj': c2w_traj.cpu(),
}
logger.info("run_spatial_tracker: Complete!")
sys.stdout.flush()
return result
def process_video(video_path: str, camera_movement: str, generate_ttm: bool = True, progress=gr.Progress()):
"""Main processing function
Args:
video_path: Path to input video
camera_movement: Type of camera movement
generate_ttm: If True, generate TTM-compatible outputs (motion_signal.mp4, mask.mp4, first_frame.png)
progress: Gradio progress tracker
"""
if video_path is None:
return None, None, None, None, "❌ Please upload a video first"
progress(0, desc="Initializing...")
# Create temp directory
temp_dir = create_user_temp_dir()
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
try:
# Load video
progress(0.1, desc="Loading video...")
video_reader = decord.VideoReader(video_path)
video_tensor = torch.from_numpy(
video_reader.get_batch(range(len(video_reader))).asnumpy()
).permute(0, 3, 1, 2).float()
# Subsample frames if too many
fps_skip = max(1, len(video_tensor) // MAX_FRAMES)
video_tensor = video_tensor[::fps_skip][:MAX_FRAMES]
# Resize to have minimum side 336
h, w = video_tensor.shape[2:]
scale = 336 / min(h, w)
if scale < 1:
new_h, new_w = int(h * scale) // 2 * 2, int(w * scale) // 2 * 2
video_tensor = T.Resize((new_h, new_w))(video_tensor)
progress(0.2, desc="Estimating depth and camera poses...")
# Run GPU-intensive spatial tracking
progress(0.4, desc="Running 3D tracking...")
tracking_results = run_spatial_tracker(video_tensor)
progress(0.6, desc="Preparing point cloud...")
# Extract results from tracking
video_out = tracking_results['video_out']
point_map = tracking_results['point_map']
conf_depth = tracking_results['conf_depth']
intrs_out = tracking_results['intrs_out']
c2w_traj = tracking_results['c2w_traj']
# Get RGB frames and depth
rgb_frames = rearrange(
video_out.numpy(), "T C H W -> T H W C").astype(np.uint8)
depth_frames = point_map[:, 2].numpy()
depth_conf_np = conf_depth.numpy()
# Mask out unreliable depth
depth_frames[depth_conf_np < 0.5] = 0
# Get camera parameters
intrs_np = intrs_out.numpy()
extrs_np = torch.inverse(c2w_traj).numpy() # world-to-camera
progress(
0.7, desc=f"Generating {camera_movement} camera trajectory...")
# Calculate scene scale from depth
valid_depth = depth_frames[depth_frames > 0]
scene_scale = np.median(valid_depth) if len(valid_depth) > 0 else 1.0
# Generate new camera trajectory
num_frames = len(rgb_frames)
new_extrinsics = generate_camera_trajectory(
num_frames, camera_movement, intrs_np, scene_scale
)
progress(0.8, desc="Rendering video from new viewpoint...")
# Render video (CPU-based, no GPU needed)
output_video_path = os.path.join(out_dir, "rendered_video.mp4")
render_results = render_from_pointcloud(
rgb_frames, depth_frames, intrs_np, extrs_np,
new_extrinsics, output_video_path, fps=OUTPUT_FPS,
generate_ttm_inputs=generate_ttm
)
# Save first frame for TTM
first_frame_path = None
motion_signal_path = None
mask_path = None
if generate_ttm:
first_frame_path = os.path.join(out_dir, "first_frame.png")
# Save original first frame (before warping) as PNG
first_frame_rgb = rgb_frames[0]
first_frame_bgr = cv2.cvtColor(first_frame_rgb, cv2.COLOR_RGB2BGR)
cv2.imwrite(first_frame_path, first_frame_bgr)
motion_signal_path = render_results['motion_signal']
mask_path = render_results['mask']
progress(1.0, desc="Done!")
status_msg = f"✅ Video rendered successfully with '{camera_movement}' camera movement!"
if generate_ttm:
status_msg += "\n\n📁 **TTM outputs generated:**\n"
status_msg += f"- `first_frame.png`: Input frame for TTM\n"
status_msg += f"- `motion_signal.mp4`: Warped video with NN inpainting\n"
status_msg += f"- `mask.mp4`: Valid pixel mask (white=valid, black=hole)"
return render_results['rendered'], motion_signal_path, mask_path, first_frame_path, status_msg
except Exception as e:
logger.error(f"Error processing video: {e}")
import traceback
traceback.print_exc()
return None, None, None, None, f"❌ Error: {str(e)}"
# TTM CogVideoX Pipeline Helper Classes and Functions
class CogVideoXTTMHelper:
"""Helper class for TTM-style video generation using CogVideoX pipeline."""
def __init__(self, pipeline):
self.pipeline = pipeline
self.vae = pipeline.vae
self.transformer = pipeline.transformer
self.scheduler = pipeline.scheduler
self.vae_scale_factor_spatial = 2 ** (
len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor_temporal = self.vae.config.temporal_compression_ratio
self.vae_scaling_factor_image = self.vae.config.scaling_factor
self.video_processor = pipeline.video_processor
@torch.no_grad()
def encode_frames(self, frames: torch.Tensor) -> torch.Tensor:
"""Encode video frames into latent space. Input shape (B, C, F, H, W), expected range [-1, 1]."""
latents = self.vae.encode(frames)[0].sample()
latents = latents * self.vae_scaling_factor_image
# (B, C, F, H, W) -> (B, F, C, H, W)
return latents.permute(0, 2, 1, 3, 4).contiguous()
def convert_rgb_mask_to_latent_mask(self, mask: torch.Tensor) -> torch.Tensor:
"""Convert a per-frame mask [T, 1, H, W] to latent resolution [1, T_latent, 1, H', W']."""
k = self.vae_scale_factor_temporal
mask0 = mask[0:1]
mask1 = mask[1::k]
sampled = torch.cat([mask0, mask1], dim=0)
pooled = sampled.permute(1, 0, 2, 3).unsqueeze(0)
s = self.vae_scale_factor_spatial
H_latent = pooled.shape[-2] // s
W_latent = pooled.shape[-1] // s
pooled = F.interpolate(pooled, size=(
pooled.shape[2], H_latent, W_latent), mode="nearest")
latent_mask = pooled.permute(0, 2, 1, 3, 4)
return latent_mask
# TTM Wan Pipeline Helper Class
class WanTTMHelper:
"""Helper class for TTM-style video generation using Wan pipeline."""
def __init__(self, pipeline):
self.pipeline = pipeline
self.vae = pipeline.vae
self.transformer = pipeline.transformer
self.scheduler = pipeline.scheduler
self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal
self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial
self.video_processor = pipeline.video_processor
def convert_rgb_mask_to_latent_mask(self, mask: torch.Tensor) -> torch.Tensor:
"""Convert a per-frame mask [T, 1, H, W] to latent resolution [1, T_latent, 1, H', W']."""
k = self.vae_scale_factor_temporal
mask0 = mask[0:1]
mask1 = mask[1::k]
sampled = torch.cat([mask0, mask1], dim=0)
pooled = sampled.permute(1, 0, 2, 3).unsqueeze(0)
s = self.vae_scale_factor_spatial
H_latent = pooled.shape[-2] // s
W_latent = pooled.shape[-1] // s
pooled = F.interpolate(pooled, size=(
pooled.shape[2], H_latent, W_latent), mode="nearest")
latent_mask = pooled.permute(0, 2, 1, 3, 4)
return latent_mask
def compute_hw_from_area(image_height: int, image_width: int, max_area: int, mod_value: int) -> tuple:
"""Compute (height, width) with proper aspect ratio and rounding."""
aspect_ratio = image_height / image_width
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
return int(height), int(width)
@spaces.GPU(duration=300)
def run_ttm_cog_generation(
first_frame_path: str,
motion_signal_path: str,
mask_path: str,
prompt: str,
tweak_index: int = 4,
tstrong_index: int = 9,
num_frames: int = 49,
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
seed: int = 0,
progress=gr.Progress()
):
"""
Run TTM-style video generation using CogVideoX pipeline.
Uses the generated motion signal and mask to guide video generation.
"""
if not TTM_COG_AVAILABLE:
return None, "❌ CogVideoX TTM is not available. Please install diffusers package."
if first_frame_path is None or motion_signal_path is None or mask_path is None:
return None, "❌ Please generate TTM inputs first (first_frame, motion_signal, mask)"
progress(0, desc="Loading CogVideoX TTM pipeline...")
try:
# Get or load the pipeline
pipe = get_ttm_cog_pipeline()
if pipe is None:
return None, "❌ Failed to load CogVideoX TTM pipeline"
pipe = pipe.to("cuda")
# Create helper
ttm_helper = CogVideoXTTMHelper(pipe)
progress(0.1, desc="Loading inputs...")
# Load first frame
image = load_image(first_frame_path)
# Get dimensions
height = pipe.transformer.config.sample_height * \
ttm_helper.vae_scale_factor_spatial
width = pipe.transformer.config.sample_width * \
ttm_helper.vae_scale_factor_spatial
device = "cuda"
generator = torch.Generator(device=device).manual_seed(seed)
progress(0.15, desc="Encoding prompt...")
# Encode prompt
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(
prompt=prompt,
negative_prompt="",
do_classifier_free_guidance=do_classifier_free_guidance,
num_videos_per_prompt=1,
max_sequence_length=226,
device=device,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat(
[negative_prompt_embeds, prompt_embeds], dim=0)
progress(0.2, desc="Preparing latents...")
# Prepare timesteps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = pipe.scheduler.timesteps
# Prepare latents
latent_frames = (
num_frames - 1) // ttm_helper.vae_scale_factor_temporal + 1
# Handle padding for CogVideoX 1.5
patch_size_t = pipe.transformer.config.patch_size_t
additional_frames = 0
if patch_size_t is not None and latent_frames % patch_size_t != 0:
additional_frames = patch_size_t - latent_frames % patch_size_t
num_frames += additional_frames * ttm_helper.vae_scale_factor_temporal
# Preprocess image
image_tensor = ttm_helper.video_processor.preprocess(image, height=height, width=width).to(
device, dtype=prompt_embeds.dtype
)
latent_channels = pipe.transformer.config.in_channels // 2
latents, image_latents = pipe.prepare_latents(
image_tensor,
1, # batch_size
latent_channels,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
None,
)
progress(0.3, desc="Loading motion signal and mask...")
# Load motion signal video
ref_vid = load_video_to_tensor(motion_signal_path).to(device=device)
refB, refC, refT, refH, refW = ref_vid.shape
ref_vid = F.interpolate(
ref_vid.permute(0, 2, 1, 3, 4).reshape(
refB*refT, refC, refH, refW),
size=(height, width), mode="bicubic", align_corners=True,
).reshape(refB, refT, refC, height, width).permute(0, 2, 1, 3, 4)
ref_vid = ttm_helper.video_processor.normalize(
ref_vid.to(dtype=pipe.vae.dtype))
ref_latents = ttm_helper.encode_frames(ref_vid).float().detach()
# Load mask video
ref_mask = load_video_to_tensor(mask_path).to(device=device)
mB, mC, mT, mH, mW = ref_mask.shape
ref_mask = F.interpolate(
ref_mask.permute(0, 2, 1, 3, 4).reshape(mB*mT, mC, mH, mW),
size=(height, width), mode="nearest",
).reshape(mB, mT, mC, height, width).permute(0, 2, 1, 3, 4)
ref_mask = ref_mask[0].permute(1, 0, 2, 3).contiguous()
if len(ref_mask.shape) == 4:
ref_mask = ref_mask.unsqueeze(0)
ref_mask = ref_mask[0, :, :1].contiguous()
ref_mask = (ref_mask > 0.5).float().max(dim=1, keepdim=True)[0]
motion_mask = ttm_helper.convert_rgb_mask_to_latent_mask(ref_mask)
background_mask = 1.0 - motion_mask
progress(0.35, desc="Initializing TTM denoising...")
# Initialize with noisy reference latents at tweak timestep
if tweak_index >= 0:
tweak = timesteps[tweak_index]
fixed_noise = randn_tensor(
ref_latents.shape,
generator=generator,
device=ref_latents.device,
dtype=ref_latents.dtype,
)
noisy_latents = pipe.scheduler.add_noise(
ref_latents, fixed_noise, tweak.long())
latents = noisy_latents.to(
dtype=latents.dtype, device=latents.device)
else:
fixed_noise = randn_tensor(
ref_latents.shape,
generator=generator,
device=ref_latents.device,
dtype=ref_latents.dtype,
)
tweak_index = 0
# Prepare extra step kwargs
extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, 0.0)
# Create rotary embeddings if required
image_rotary_emb = (
pipe._prepare_rotary_positional_embeddings(
height, width, latents.size(1), device)
if pipe.transformer.config.use_rotary_positional_embeddings
else None
)
# Create ofs embeddings if required
ofs_emb = None if pipe.transformer.config.ofs_embed_dim is None else latents.new_full(
(1,), fill_value=2.0)
progress(0.4, desc="Running TTM denoising loop...")
# Denoising loop
total_steps = len(timesteps) - tweak_index
old_pred_original_sample = None
for i, t in enumerate(timesteps[tweak_index:]):
step_progress = 0.4 + 0.5 * (i / total_steps)
progress(step_progress,
desc=f"Denoising step {i+1}/{total_steps}...")
latent_model_input = torch.cat(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = pipe.scheduler.scale_model_input(
latent_model_input, t)
latent_image_input = torch.cat(
[image_latents] * 2) if do_classifier_free_guidance else image_latents
latent_model_input = torch.cat(
[latent_model_input, latent_image_input], dim=2)
timestep = t.expand(latent_model_input.shape[0])
# Predict noise
noise_pred = pipe.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
ofs=ofs_emb,
image_rotary_emb=image_rotary_emb,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# Compute previous noisy sample
if not isinstance(pipe.scheduler, CogVideoXDPMScheduler):
latents, old_pred_original_sample = pipe.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)
else:
latents, old_pred_original_sample = pipe.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents,
**extra_step_kwargs,
return_dict=False,
)
# TTM: In between tweak and tstrong, replace mask with noisy reference latents
in_between_tweak_tstrong = (i + tweak_index) < tstrong_index
if in_between_tweak_tstrong:
if i + tweak_index + 1 < len(timesteps):
prev_t = timesteps[i + tweak_index + 1]
noisy_latents = pipe.scheduler.add_noise(ref_latents, fixed_noise, prev_t.long()).to(
dtype=latents.dtype, device=latents.device
)
latents = latents * background_mask + noisy_latents * motion_mask
else:
latents = latents * background_mask + ref_latents * motion_mask
latents = latents.to(prompt_embeds.dtype)
progress(0.9, desc="Decoding video...")
# Decode latents
latents = latents[:, additional_frames:]
frames = pipe.decode_latents(latents)
video = ttm_helper.video_processor.postprocess_video(
video=frames, output_type="pil")
progress(0.95, desc="Saving video...")
# Save video
temp_dir = create_user_temp_dir()
output_path = os.path.join(temp_dir, "ttm_output.mp4")
export_to_video(video[0], output_path, fps=8)
progress(1.0, desc="Done!")
return output_path, f"✅ CogVideoX TTM video generated successfully!\n\n**Parameters:**\n- Model: CogVideoX-5B\n- tweak_index: {tweak_index}\n- tstrong_index: {tstrong_index}\n- guidance_scale: {guidance_scale}\n- seed: {seed}"
except Exception as e:
logger.error(f"Error in CogVideoX TTM generation: {e}")
import traceback
traceback.print_exc()
return None, f"❌ Error: {str(e)}"
@spaces.GPU(duration=300)
def run_ttm_wan_generation(
first_frame_path: str,
motion_signal_path: str,
mask_path: str,
prompt: str,
negative_prompt: str = "",
tweak_index: int = 3,
tstrong_index: int = 7,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 3.5,
seed: int = 0,
progress=gr.Progress()
):
"""
Run TTM-style video generation using Wan 2.2 pipeline.
This is the recommended model for TTM as it produces higher-quality results.
"""
if not TTM_WAN_AVAILABLE:
return None, "❌ Wan TTM is not available. Please install diffusers with Wan support."
if first_frame_path is None or motion_signal_path is None or mask_path is None:
return None, "❌ Please generate TTM inputs first (first_frame, motion_signal, mask)"
progress(0, desc="Loading Wan 2.2 TTM pipeline...")
try:
# Get or load the pipeline
pipe = get_ttm_wan_pipeline()
if pipe is None:
return None, "❌ Failed to load Wan TTM pipeline"
pipe = pipe.to("cuda")
# Create helper
ttm_helper = WanTTMHelper(pipe)
progress(0.1, desc="Loading inputs...")
# Load first frame
image = load_image(first_frame_path)
# Get dimensions - compute based on image aspect ratio
max_area = 480 * 832
mod_value = ttm_helper.vae_scale_factor_spatial * \
pipe.transformer.config.patch_size[1]
height, width = compute_hw_from_area(
image.height, image.width, max_area, mod_value)
image = image.resize((width, height))
device = "cuda"
gen_device = device if device.startswith("cuda") else "cpu"
generator = torch.Generator(device=gen_device).manual_seed(seed)
progress(0.15, desc="Encoding prompt...")
# Encode prompt
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
do_classifier_free_guidance=do_classifier_free_guidance,
num_videos_per_prompt=1,
max_sequence_length=512,
device=device,
)
# Get transformer dtype
transformer_dtype = pipe.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(
transformer_dtype)
# Encode image embedding if transformer supports it
image_embeds = None
if pipe.transformer.config.image_dim is not None:
image_embeds = pipe.encode_image(image, device)
image_embeds = image_embeds.repeat(1, 1, 1)
image_embeds = image_embeds.to(transformer_dtype)
progress(0.2, desc="Preparing latents...")
# Prepare timesteps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = pipe.scheduler.timesteps
# Adjust num_frames to be valid for VAE
if num_frames % ttm_helper.vae_scale_factor_temporal != 1:
num_frames = num_frames // ttm_helper.vae_scale_factor_temporal * \
ttm_helper.vae_scale_factor_temporal + 1
num_frames = max(num_frames, 1)
# Prepare latent variables
num_channels_latents = pipe.vae.config.z_dim
image_tensor = ttm_helper.video_processor.preprocess(
image, height=height, width=width).to(device, dtype=torch.float32)
latents_outputs = pipe.prepare_latents(
image_tensor,
1, # batch_size
num_channels_latents,
height,
width,
num_frames,
torch.float32,
device,
generator,
None,
None, # last_image
)
if hasattr(pipe, 'config') and pipe.config.expand_timesteps:
latents, condition, first_frame_mask = latents_outputs
else:
latents, condition = latents_outputs
first_frame_mask = None
progress(0.3, desc="Loading motion signal and mask...")
# Load motion signal video
ref_vid = load_video_to_tensor(motion_signal_path).to(device=device)
refB, refC, refT, refH, refW = ref_vid.shape
ref_vid = F.interpolate(
ref_vid.permute(0, 2, 1, 3, 4).reshape(
refB*refT, refC, refH, refW),
size=(height, width), mode="bicubic", align_corners=True,
).reshape(refB, refT, refC, height, width).permute(0, 2, 1, 3, 4)
ref_vid = ttm_helper.video_processor.normalize(
ref_vid.to(dtype=pipe.vae.dtype))
ref_latents = retrieve_latents(
pipe.vae.encode(ref_vid), sample_mode="argmax")
# Normalize latents
latents_mean = torch.tensor(pipe.vae.config.latents_mean).view(
1, pipe.vae.config.z_dim, 1, 1, 1).to(ref_latents.device, ref_latents.dtype)
latents_std = 1.0 / torch.tensor(pipe.vae.config.latents_std).view(
1, pipe.vae.config.z_dim, 1, 1, 1).to(ref_latents.device, ref_latents.dtype)
ref_latents = (ref_latents - latents_mean) * latents_std
# Load mask video
ref_mask = load_video_to_tensor(mask_path).to(device=device)
mB, mC, mT, mH, mW = ref_mask.shape
ref_mask = F.interpolate(
ref_mask.permute(0, 2, 1, 3, 4).reshape(mB*mT, mC, mH, mW),
size=(height, width), mode="nearest",
).reshape(mB, mT, mC, height, width).permute(0, 2, 1, 3, 4)
mask_tc_hw = ref_mask[0].permute(1, 0, 2, 3).contiguous()
# Align time dimension
if mask_tc_hw.shape[0] > num_frames:
mask_tc_hw = mask_tc_hw[:num_frames]
elif mask_tc_hw.shape[0] < num_frames:
return None, f"❌ num_frames ({num_frames}) > mask frames ({mask_tc_hw.shape[0]}). Please use more mask frames."
# Reduce channels if needed
if mask_tc_hw.shape[1] > 1:
mask_t1_hw = (mask_tc_hw > 0.5).any(dim=1, keepdim=True).float()
else:
mask_t1_hw = (mask_tc_hw > 0.5).float()
motion_mask = ttm_helper.convert_rgb_mask_to_latent_mask(
mask_t1_hw).permute(0, 2, 1, 3, 4).contiguous()
background_mask = 1.0 - motion_mask
progress(0.35, desc="Initializing TTM denoising...")
# Initialize with noisy reference latents at tweak timestep
if tweak_index >= 0 and tweak_index < len(timesteps):
tweak = timesteps[tweak_index]
fixed_noise = randn_tensor(
ref_latents.shape,
generator=generator,
device=ref_latents.device,
dtype=ref_latents.dtype,
)
tweak_t = torch.as_tensor(
tweak, device=ref_latents.device, dtype=torch.long).view(1)
noisy_latents = pipe.scheduler.add_noise(
ref_latents, fixed_noise, tweak_t.long())
latents = noisy_latents.to(
dtype=latents.dtype, device=latents.device)
else:
fixed_noise = randn_tensor(
ref_latents.shape,
generator=generator,
device=ref_latents.device,
dtype=ref_latents.dtype,
)
tweak_index = 0
progress(0.4, desc="Running TTM denoising loop...")
# Denoising loop
total_steps = len(timesteps) - tweak_index
for i, t in enumerate(timesteps[tweak_index:]):
step_progress = 0.4 + 0.5 * (i / total_steps)
progress(step_progress,
desc=f"Denoising step {i+1}/{total_steps}...")
# Prepare model input
if first_frame_mask is not None:
latent_model_input = (1 - first_frame_mask) * \
condition + first_frame_mask * latents
latent_model_input = latent_model_input.to(transformer_dtype)
temp_ts = (first_frame_mask[0][0][:, ::2, ::2] * t).flatten()
timestep = temp_ts.unsqueeze(0).expand(latents.shape[0], -1)
else:
latent_model_input = torch.cat(
[latents, condition], dim=1).to(transformer_dtype)
timestep = t.expand(latents.shape[0])
# Predict noise (conditional)
noise_pred = pipe.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_image=image_embeds,
return_dict=False,
)[0]
# CFG
if do_classifier_free_guidance:
noise_uncond = pipe.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_hidden_states_image=image_embeds,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * \
(noise_pred - noise_uncond)
# Scheduler step
latents = pipe.scheduler.step(
noise_pred, t, latents, return_dict=False)[0]
# TTM: In between tweak and tstrong, replace mask with noisy reference latents
in_between_tweak_tstrong = (i + tweak_index) < tstrong_index
if in_between_tweak_tstrong:
if i + tweak_index + 1 < len(timesteps):
prev_t = timesteps[i + tweak_index + 1]
prev_t = torch.as_tensor(
prev_t, device=ref_latents.device, dtype=torch.long).view(1)
noisy_latents = pipe.scheduler.add_noise(ref_latents, fixed_noise, prev_t.long()).to(
dtype=latents.dtype, device=latents.device
)
latents = latents * background_mask + noisy_latents * motion_mask
else:
latents = latents * background_mask + \
ref_latents.to(dtype=latents.dtype,
device=latents.device) * motion_mask
progress(0.9, desc="Decoding video...")
# Apply first frame mask if used
if first_frame_mask is not None:
latents = (1 - first_frame_mask) * condition + \
first_frame_mask * latents
# Decode latents
latents = latents.to(pipe.vae.dtype)
latents_mean = torch.tensor(pipe.vae.config.latents_mean).view(
1, pipe.vae.config.z_dim, 1, 1, 1).to(latents.device, latents.dtype)
latents_std = 1.0 / torch.tensor(pipe.vae.config.latents_std).view(
1, pipe.vae.config.z_dim, 1, 1, 1).to(latents.device, latents.dtype)
latents = latents / latents_std + latents_mean
video = pipe.vae.decode(latents, return_dict=False)[0]
video = ttm_helper.video_processor.postprocess_video(
video, output_type="pil")
progress(0.95, desc="Saving video...")
# Save video
temp_dir = create_user_temp_dir()
output_path = os.path.join(temp_dir, "ttm_wan_output.mp4")
export_to_video(video[0], output_path, fps=16)
progress(1.0, desc="Done!")
return output_path, f"✅ Wan 2.2 TTM video generated successfully!\n\n**Parameters:**\n- Model: Wan2.2-14B\n- tweak_index: {tweak_index}\n- tstrong_index: {tstrong_index}\n- guidance_scale: {guidance_scale}\n- seed: {seed}"
except Exception as e:
logger.error(f"Error in Wan TTM generation: {e}")
import traceback
traceback.print_exc()
return None, f"❌ Error: {str(e)}"
def run_ttm_generation(
first_frame_path: str,
motion_signal_path: str,
mask_path: str,
prompt: str,
negative_prompt: str,
model_choice: str,
tweak_index: int,
tstrong_index: int,
num_frames: int,
num_inference_steps: int,
guidance_scale: float,
seed: int,
progress=gr.Progress()
):
"""
Router function that calls the appropriate TTM generation based on model choice.
"""
if "Wan" in model_choice:
return run_ttm_wan_generation(
first_frame_path=first_frame_path,
motion_signal_path=motion_signal_path,
mask_path=mask_path,
prompt=prompt,
negative_prompt=negative_prompt,
tweak_index=tweak_index,
tstrong_index=tstrong_index,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
progress=progress,
)
else:
return run_ttm_cog_generation(
first_frame_path=first_frame_path,
motion_signal_path=motion_signal_path,
mask_path=mask_path,
prompt=prompt,
tweak_index=tweak_index,
tstrong_index=tstrong_index,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
progress=progress,
)
# Create Gradio interface
logger.info("🎨 Creating Gradio interface...")
sys.stdout.flush()
with gr.Blocks(
theme=gr.themes.Soft(),
title="🎬 Video to Point Cloud Renderer",
css="""
.gradio-container {
max-width: 1400px !important;
margin: auto !important;
}
"""
) as demo:
gr.Markdown("""
# 🎬 Video to Point Cloud Renderer + TTM Video Generation
Upload a video to generate a 3D point cloud, render it from a new camera perspective,
and optionally run **Time-to-Move (TTM)** for motion-controlled video generation.
**Workflow:**
1. **Step 1**: Upload a video and select camera movement → Generate motion signal & mask
2. **Step 2**: (Optional) Run TTM to generate a high-quality video with the motion signal
**TTM (Time-to-Move)** uses dual-clock denoising to guide video generation using:
- `first_frame.png`: Starting frame
- `motion_signal.mp4`: Warped video showing desired motion
- `mask.mp4`: Binary mask for motion regions
""")
# State to store paths for TTM
first_frame_state = gr.State(None)
motion_signal_state = gr.State(None)
mask_state = gr.State(None)
with gr.Tabs():
with gr.Tab("📥 Step 1: Generate Motion Signal"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📥 Input")
video_input = gr.Video(
label="Upload Video",
format="mp4",
height=300
)
camera_movement = gr.Dropdown(
choices=CAMERA_MOVEMENTS,
value="static",
label="🎥 Camera Movement",
info="Select how the camera should move in the rendered video"
)
generate_ttm = gr.Checkbox(
label="🎯 Generate TTM Inputs",
value=True,
info="Generate motion_signal.mp4 and mask.mp4 for Time-to-Move"
)
generate_btn = gr.Button(
"🚀 Generate Motion Signal", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### 📤 Rendered Output")
output_video = gr.Video(
label="Rendered Video",
height=250
)
first_frame_output = gr.Image(
label="First Frame (first_frame.png)",
height=150
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🎯 TTM: Motion Signal")
motion_signal_output = gr.Video(
label="Motion Signal Video (motion_signal.mp4)",
height=250
)
with gr.Column(scale=1):
gr.Markdown("### 🎭 TTM: Mask")
mask_output = gr.Video(
label="Mask Video (mask.mp4)",
height=250
)
status_text = gr.Markdown("Ready to process...")
with gr.Tab("🎬 Step 2: TTM Video Generation"):
cog_available = "✅" if TTM_COG_AVAILABLE else "❌"
wan_available = "✅" if TTM_WAN_AVAILABLE else "❌"
gr.Markdown(f"""
### 🎬 Time-to-Move (TTM) Video Generation
**Model Availability:**
- {cog_available} CogVideoX-5B-I2V
- {wan_available} Wan 2.2-14B (Recommended - higher quality)
**TTM Parameters:**
- **tweak_index**: When denoising starts *outside* the mask (lower = more dynamic background)
- **tstrong_index**: When denoising starts *inside* the mask (higher = more constrained motion)
**Recommended values:**
- CogVideoX - Cut-and-Drag: `tweak_index=4`, `tstrong_index=9`
- CogVideoX - Camera control: `tweak_index=3`, `tstrong_index=7`
- **Wan 2.2 (Recommended)**: `tweak_index=3`, `tstrong_index=7`
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### ⚙️ TTM Settings")
ttm_model_choice = gr.Dropdown(
choices=TTM_MODELS if TTM_MODELS else ["No TTM models available"],
value=TTM_MODELS[1] if TTM_WAN_AVAILABLE else (TTM_MODELS[0] if TTM_MODELS else None),
label="Model",
info="Wan 2.2 is recommended for higher quality"
)
ttm_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the video content...",
value="A high quality video, smooth motion, natural lighting",
lines=2
)
ttm_negative_prompt = gr.Textbox(
label="Negative Prompt (Wan only)",
placeholder="Things to avoid in the video...",
value="",
lines=1,
visible=True
)
with gr.Row():
ttm_tweak_index = gr.Slider(
minimum=0,
maximum=20,
value=3,
step=1,
label="tweak_index",
info="When background denoising starts"
)
ttm_tstrong_index = gr.Slider(
minimum=0,
maximum=30,
value=7,
step=1,
label="tstrong_index",
info="When mask region denoising starts"
)
with gr.Row():
ttm_num_frames = gr.Slider(
minimum=17,
maximum=81,
value=49,
step=4,
label="Number of Frames"
)
ttm_guidance_scale = gr.Slider(
minimum=1.0,
maximum=15.0,
value=3.5,
step=0.5,
label="Guidance Scale"
)
with gr.Row():
ttm_num_steps = gr.Slider(
minimum=20,
maximum=100,
value=50,
step=5,
label="Inference Steps"
)
ttm_seed = gr.Number(
value=0,
label="Seed",
precision=0
)
ttm_generate_btn = gr.Button(
"🎬 Generate TTM Video",
variant="primary",
size="lg",
interactive=TTM_AVAILABLE
)
with gr.Column(scale=1):
gr.Markdown("### 📤 TTM Output")
ttm_output_video = gr.Video(
label="TTM Generated Video",
height=400
)
ttm_status_text = gr.Markdown(
"Upload a video in Step 1 first, then run TTM here.")
# TTM Input preview
with gr.Accordion("📁 TTM Input Files (from Step 1)", open=False):
with gr.Row():
ttm_preview_first_frame = gr.Image(
label="First Frame",
height=150
)
ttm_preview_motion = gr.Video(
label="Motion Signal",
height=150
)
ttm_preview_mask = gr.Video(
label="Mask",
height=150
)
# Helper function to update states and preview
def process_and_update_states(video_path, camera_movement, generate_ttm_flag, progress=gr.Progress()):
result = process_video(video_path, camera_movement,
generate_ttm_flag, progress)
output_vid, motion_sig, mask_vid, first_frame, status = result
# Return all outputs including state updates and previews
return (
output_vid, # output_video
motion_sig, # motion_signal_output
mask_vid, # mask_output
first_frame, # first_frame_output
status, # status_text
first_frame, # first_frame_state
motion_sig, # motion_signal_state
mask_vid, # mask_state
first_frame, # ttm_preview_first_frame
motion_sig, # ttm_preview_motion
mask_vid, # ttm_preview_mask
)
# Event handlers
generate_btn.click(
fn=process_and_update_states,
inputs=[video_input, camera_movement, generate_ttm],
outputs=[
output_video, motion_signal_output, mask_output, first_frame_output, status_text,
first_frame_state, motion_signal_state, mask_state,
ttm_preview_first_frame, ttm_preview_motion, ttm_preview_mask
]
)
# TTM generation event
ttm_generate_btn.click(
fn=run_ttm_generation,
inputs=[
first_frame_state,
motion_signal_state,
mask_state,
ttm_prompt,
ttm_negative_prompt,
ttm_model_choice,
ttm_tweak_index,
ttm_tstrong_index,
ttm_num_frames,
ttm_num_steps,
ttm_guidance_scale,
ttm_seed
],
outputs=[ttm_output_video, ttm_status_text]
)
# Examples
gr.Markdown("### 📁 Examples")
if os.path.exists("./examples"):
example_videos = [f for f in os.listdir(
"./examples") if f.endswith(".mp4")][:4]
if example_videos:
gr.Examples(
examples=[[f"./examples/{v}", "move_forward", True]
for v in example_videos],
inputs=[video_input, camera_movement, generate_ttm],
outputs=[
output_video, motion_signal_output, mask_output, first_frame_output, status_text,
first_frame_state, motion_signal_state, mask_state,
ttm_preview_first_frame, ttm_preview_motion, ttm_preview_mask
],
fn=process_and_update_states,
cache_examples=False
)
# Launch
logger.info("✅ Gradio interface created successfully!")
logger.info("=" * 50)
logger.info("Application ready to launch")
logger.info("=" * 50)
sys.stdout.flush()
if __name__ == "__main__":
logger.info("Starting Gradio server...")
sys.stdout.flush()
demo.launch(share=False)
|