#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 17 19:47:32 2024 @author: yanwe """ import pandas as pd import shutil import os test = pd.read_csv('/mnt/de1dcd1c-9be8-42ed-aa06-bb73570121ac/MIMIC_CXR/60k/meta/test.csv', nrows=500) test['path_preproc'] = None for n in range(500): test.loc[n,'path_preproc'] = f'{n}.jpg' source_file = '/mnt/de1dcd1c-9be8-42ed-aa06-bb73570121ac/MIMIC_CXR/60k/data' target_directory = '/mnt/de1dcd1c-9be8-42ed-aa06-bb73570121ac/cf_app/data/mimic_subset' for n in range(500): file_name = os.path.join(source_file, test.loc[n,'dicom_id'] + '.jpg') new_name = os.path.join(target_directory, test.loc[n,'path_preproc']) shutil.copy(file_name, new_name) def label_to_name(data): if data['disease_label'] == 0: return "No Finding" elif data['disease_label'] == 1: return "Pleural Effusion" elif data['disease_label'] == 2: return "Pneumonia" else: return "No Finding" def label_to_sex(data): if data['sex_label'] == 0: return "Female" elif data['sex_label'] == 1: return "Male" else: return "Female" def label_to_race(data): if data['race_label'] == 0: return "White" elif data['race_label'] == 1: return "Black" elif data['race_label'] == 2: return "Asian" test['disease'] = test.apply(label_to_name, axis=1) test['sex'] = test.apply(label_to_sex, axis=1) test['race'] = test.apply(label_to_race, axis=1) test.to_csv('/mnt/de1dcd1c-9be8-42ed-aa06-bb73570121ac/cf_app/data/mimic_subset/mimic.sample.test.csv')