Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from huggingface_hub import login | |
| from transformers import StoppingCriteria, StoppingCriteriaList | |
| import os | |
| import torch | |
| import uvicorn | |
| class StopOnStrings(StoppingCriteria): | |
| def __init__(self, tokenizer, stop_strings): | |
| self.tokenizer = tokenizer | |
| self.stop_ids = [tokenizer.encode(s, add_special_tokens=False) for s in stop_strings] | |
| def __call__(self, input_ids, scores, **kwargs): | |
| for stop_id in self.stop_ids: | |
| if input_ids[0][-len(stop_id):].tolist() == stop_id: | |
| return True | |
| return False | |
| login(os.getenv("HF_TOKEN")) | |
| app = FastAPI( | |
| title="VexaAI Model-Platform: Microsoft Phi-1.5", | |
| description="Self-hosted AI-Model Microsoft Phi-1.5, powered by VexaAI.", | |
| version="0.9" | |
| ) | |
| model_name = "microsoft/phi-1_5" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| torch_dtype=torch.float32 | |
| ) | |
| model.eval() | |
| class GenerateRequest(BaseModel): | |
| prompt: str | |
| max_new_tokens: int = 512 | |
| temperature: float = 0.7 | |
| async def generate_text(request: GenerateRequest): | |
| try: | |
| inputs = tokenizer(request.prompt, return_tensors="pt").to(model.device) | |
| with torch.no_grad(): | |
| stopping = StoppingCriteriaList([ | |
| StopOnStrings(tokenizer, ["\n\n", "###", "END"]) | |
| ]) | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=request.max_new_tokens, | |
| temperature=request.temperature, | |
| do_sample=True, | |
| repetition_penalty=1.1, | |
| pad_token_id=tokenizer.eos_token_id, | |
| stopping_criteria=stopping | |
| ) | |
| full_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| generated_text = full_text[len(tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)):].strip() | |
| return {"generated_text": generated_text} | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"VexaAI Model-Platform: HTTP/S error: {str(e)}") | |
| async def root(): | |
| return {"message": "To start generating text, use /generate."} | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=7860) |