Werli's picture
Upload 9 files
b7b4c85 verified
raw
history blame
31.4 kB
import os, json, zipfile, tempfile, time, traceback
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
from collections import defaultdict
from typing import Union, Dict, Any, Tuple, List
from PIL import Image
from huggingface_hub import hf_hub_download
from huggingface_hub.errors import EntryNotFoundError
from datetime import datetime
# Global variables for model components (for memory management)
CURRENT_MODEL = None
CURRENT_MODEL_NAME = None
CURRENT_TAGS_DF = None
CURRENT_D_IPS = None
CURRENT_PREPROCESS_FUNC = None
CURRENT_THRESHOLDS = None
CURRENT_CATEGORY_NAMES = None
css = """
#custom-gallery {--row-height: 180px;display: grid;grid-auto-rows: min-content;gap: 10px;}
#custom-gallery .thumbnail-item {height: var(--row-height);width: 100%;position: relative;overflow: hidden;border-radius: 8px;box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);transition: transform 0.2s ease, box-shadow 0.2s ease;}
#custom-gallery .thumbnail-item:hover {transform: translateY(-3px);box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);}
#custom-gallery .thumbnail-item img {width: auto;height: 100%;max-width: 100%;max-height: var(--row-height);object-fit: contain;margin: 0 auto;display: block;}
#custom-gallery .thumbnail-item img.portrait {max-width: 100%;}
#custom-gallery .thumbnail-item img.landscape {max-height: 100%;}
.gallery-container {max-height: 500px;overflow-y: auto;padding-right: 0px;--size-80: 500px;}
.thumbnails {display: flex;position: absolute;bottom: 0;width: 120px;overflow-x: scroll;padding-top: 320px;padding-bottom: 280px;padding-left: 4px;flex-wrap: wrap;}
#custom-gallery .thumbnail-item img {width: auto;height: 100%;max-width: 100%;max-height: var(--row-height);object-fit: initial;width: fit-content;margin: 0px auto;display: block;}
"""
def preprocess_on_gpu(img, device='cuda'):
"""Preprocess image on GPU using PyTorch"""
import torch
import torchvision.transforms as transforms
# Convert PIL to tensor and move to GPU
transform = transforms.Compose([transforms.Resize((448, 448)), transforms.ToTensor(), transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
# Move to GPU if available
tensor_img = transform(img).unsqueeze(0)
if torch.cuda.is_available():
tensor_img = tensor_img.to(device)
return tensor_img.cpu().numpy()
class Timer: # Report the execution time & process
def __init__(self):
self.start_time = time.perf_counter()
self.checkpoints = [('Start', self.start_time)]
def checkpoint(self, label='Checkpoint'):
now = time.perf_counter()
self.checkpoints.append((label, now))
def report(self, is_clear_checkpoints=True):
max_label_length = max(len(label) for (label, _) in self.checkpoints) if self.checkpoints else 0
prev_time = self.checkpoints[0][1] if self.checkpoints else self.start_time
for (label, curr_time) in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
if is_clear_checkpoints:
self.checkpoints.clear()
self.checkpoint()
def report_all(self):
print('\n> Execution Time Report:')
max_label_length = max(len(label) for (label, _) in self.checkpoints) if len(self.checkpoints) > 0 else 0
prev_time = self.start_time
for (label, curr_time) in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
total_time = self.checkpoints[-1][1] - self.start_time if self.checkpoints else 0
print(f"{'Total Execution Time'.ljust(max_label_length)}: {total_time:.3f} seconds\n") # Performance tests
self.checkpoints.clear()
def restart(self):
self.start_time = time.perf_counter()
self.checkpoints = [('Start', self.start_time)]
def _get_repo_id(model_name: str) -> str:
"""Get the repository ID for the specified model name."""
if '/' in model_name:
return model_name
else:
return f'deepghs/pixai-tagger-{model_name}-onnx'
def _download_model_files(model_name: str):
"""Download all required model files."""
repo_id = _get_repo_id(model_name)
# Download the necessary files using hf_hub_download instead of local cache...
model_path = hf_hub_download(
repo_id=repo_id,
filename='model.onnx',
library_name="pixai-tagger"
)
tags_path = hf_hub_download(
repo_id=repo_id,
filename='selected_tags.csv',
library_name="pixai-tagger"
)
preprocess_path = hf_hub_download(
repo_id=repo_id,
filename='preprocess.json',
library_name="pixai-tagger"
)
try:
thresholds_path = hf_hub_download(
repo_id=repo_id,
filename='thresholds.csv',
library_name="pixai-tagger"
)
except EntryNotFoundError:
thresholds_path = None
return model_path, tags_path, preprocess_path, thresholds_path
def create_optimized_ort_session(model_path):
"""Create an optimized ONNX Runtime session with GPU support"""
# Test: Session options for better performance
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.intra_op_num_threads = 0 # Use all available cores
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
sess_options.enable_mem_pattern = True
sess_options.enable_cpu_mem_arena = True
# Check available providers
available_providers = ort.get_available_providers()
print(f"Available ONNX Runtime providers: {available_providers}")
# Use appropriate execution providers (in order of preference)
providers = []
# Use CUDA if available
if 'CUDAExecutionProvider' in available_providers:
cuda_provider = ('CUDAExecutionProvider', {
'device_id': 0,
'arena_extend_strategy': 'kNextPowerOfTwo',
'gpu_mem_limit': 4 * 1024 * 1024 * 1024, # 4GB VRAM
'cudnn_conv_algo_search': 'EXHAUSTIVE',
'do_copy_in_default_stream': True,
})
providers.append(cuda_provider)
print("Using CUDA provider for ONNX inference")
else:
print("CUDA provider not available, falling back to CPU")
# Always include CPU as fallback (FOR HF)
providers.append('CPUExecutionProvider')
try:
session = ort.InferenceSession(model_path, sess_options, providers=providers)
print(f"Model loaded with providers: {session.get_providers()}")
return session
except Exception as e:
print(f"Failed to create ONNX session: {e}")
raise
def _load_model_components_optimized(model_name: str):
global CURRENT_MODEL, CURRENT_MODEL_NAME, CURRENT_TAGS_DF, CURRENT_D_IPS
global CURRENT_PREPROCESS_FUNC, CURRENT_THRESHOLDS, CURRENT_CATEGORY_NAMES
# Only reload if model changed
if CURRENT_MODEL_NAME != model_name:
# Download files
model_path, tags_path, preprocess_path, thresholds_path = _download_model_files(model_name)
# Load optimized ONNX model
CURRENT_MODEL = create_optimized_ort_session(model_path)
# Load tags
CURRENT_TAGS_DF = pd.read_csv(tags_path)
CURRENT_D_IPS = {}
if 'ips' in CURRENT_TAGS_DF.columns:
CURRENT_TAGS_DF['ips'] = CURRENT_TAGS_DF['ips'].fillna('{}').map(json.loads)
for name, ips in zip(CURRENT_TAGS_DF['name'], CURRENT_TAGS_DF['ips']):
if ips:
CURRENT_D_IPS[name] = ips
# Load preprocessing
with open(preprocess_path, 'r') as f:
data_ = json.load(f)
# Simple preprocessing function
def transform(img):
# Ensure image is in RGB mode
if img.mode != 'RGB':
img = img.convert('RGB')
# Resize to 448x448 <- Very important.
img = img.resize((448, 448), Image.Resampling.LANCZOS)
# Convert to numpy array and normalize
img_array = np.array(img).astype(np.float32)
# Normalize pixel values to [0, 1]
img_array = img_array / 255.0
# Normalize with ImageNet mean and std
mean = np.array([0.48145466, 0.4578275, 0.40821073]).astype(np.float32)
std = np.array([0.26862954, 0.26130258, 0.27577711]).astype(np.float32)
img_array = (img_array - mean) / std
# Transpose to (C, H, W)
img_array = np.transpose(img_array, (2, 0, 1))
return img_array
CURRENT_PREPROCESS_FUNC = transform
# Load thresholds
CURRENT_THRESHOLDS = {}
CURRENT_CATEGORY_NAMES = {}
if thresholds_path and os.path.exists(thresholds_path):
df_category_thresholds = pd.read_csv(thresholds_path, keep_default_na=False)
for item in df_category_thresholds.to_dict('records'):
if item['category'] not in CURRENT_THRESHOLDS:
CURRENT_THRESHOLDS[item['category']] = item['threshold']
CURRENT_CATEGORY_NAMES[item['category']] = item['name']
else:
# Default thresholds if file doesn't exist
CURRENT_THRESHOLDS = {0: 0.3, 4: 0.85, 9: 0.85}
CURRENT_CATEGORY_NAMES = {0: 'general', 4: 'character', 9: 'rating'}
CURRENT_MODEL_NAME = model_name
return (CURRENT_MODEL, CURRENT_TAGS_DF, CURRENT_D_IPS, CURRENT_PREPROCESS_FUNC,
CURRENT_THRESHOLDS, CURRENT_CATEGORY_NAMES)
def _raw_predict(image: Image.Image, model_name: str):
"""Make a raw prediction with the PixAI tagger model."""
try:
# Ensure we have a PIL Image
if not isinstance(image, Image.Image):
raise ValueError("Input must be a PIL Image") # <-
# Load model components
model, _, _, preprocess_func, _, _ = _load_model_components_optimized(model_name)
# Preprocess image
input_tensor = preprocess_func(image)
# Add batch dimension
if len(input_tensor.shape) == 3:
input_tensor = np.expand_dims(input_tensor, axis=0)
# Run inference
output_names = [output.name for output in model.get_outputs()]
output_values = model.run(output_names, {'input': input_tensor.astype(np.float32)})
return {name: value[0] for name, value in zip(output_names, output_values)}
except Exception as e:
raise RuntimeError(f"Error processing image: {str(e)}")
def get_pixai_tags(
image: Union[str, Image.Image],
model_name: str = 'deepghs/pixai-tagger-v0.9-onnx',
thresholds: Union[float, Dict[Any, float]] = None,
fmt='all'
):
try:
# Load image if it's a path
if isinstance(image, str):
pil_image = Image.open(image)
elif isinstance(image, Image.Image):
pil_image = image
else:
raise ValueError("Image must be a file path or PIL Image")
# Load model components
_, df_tags, d_ips, _, default_thresholds, category_names = _load_model_components_optimized(model_name)
values = _raw_predict(pil_image, model_name)
prediction = values.get('prediction', np.array([]))
if prediction.size == 0:
raise RuntimeError("Model did not return valid predictions")
tags = {}
# Process tags by category
for category in sorted(set(df_tags['category'].tolist())):
mask = df_tags['category'] == category
tag_names = df_tags.loc[mask, 'name']
category_pred = prediction[mask]
# Determine threshold for this category
if isinstance(thresholds, float):
category_threshold = thresholds
elif isinstance(thresholds, dict) and \
(category in thresholds or category_names.get(category, '') in thresholds):
if category in thresholds:
category_threshold = thresholds[category]
elif category_names.get(category, '') in thresholds:
category_threshold = thresholds[category_names[category]]
else:
category_threshold = 0.85
else:
category_threshold = default_thresholds.get(category, 0.85)
# Apply threshold
pred_mask = category_pred >= category_threshold
filtered_tag_names = tag_names[pred_mask].tolist()
filtered_predictions = category_pred[pred_mask].tolist()
# Sort by confidence
cate_tags = dict(sorted(
zip(filtered_tag_names, filtered_predictions),
key=lambda x: (-x[1], x[0])
))
category_name = category_names.get(category, f"category_{category}")
values[category_name] = cate_tags
tags.update(cate_tags)
values['tag'] = tags
# Handle IPs if available
if 'ips' in df_tags.columns:
ips_mapping, ips_counts = {}, defaultdict(int)
for tag, _ in tags.items():
if tag in d_ips:
ips_mapping[tag] = d_ips[tag]
for ip_name in d_ips[tag]:
ips_counts[ip_name] += 1
values['ips_mapping'] = ips_mapping
values['ips_count'] = dict(ips_counts)
values['ips'] = [x for x, _ in sorted(ips_counts.items(), key=lambda x: (-x[1], x[0]))]
# Return based on format
if fmt == 'all':
# Return all available categories
available_categories = [category_names.get(cat, f"category_{cat}")
for cat in sorted(set(df_tags['category'].tolist()))]
return tuple(values.get(cat, {}) for cat in available_categories)
elif fmt in values:
return values[fmt]
else:
return values
except Exception as e:
raise RuntimeError(f"Error processing image: {str(e)}")
def format_ips_output(ips_result, ips_mapping):
"""Format IP detection output as a single string with proper escaping."""
if not ips_result and not ips_mapping:
return ""
# Format detected IPs
ips_list = []
if ips_result:
ips_list = [ip.replace("(", "\\(").replace(")", "\\)").replace("_", " ")
for ip in ips_result]
# Format character-to-IP mapping
mapping_list = []
if ips_mapping:
for char, ips in ips_mapping.items():
formatted_char = char.replace("(", "\\(").replace(")", "\\)").replace("_", " ")
formatted_ips = [ip.replace("(", "\\(").replace(")", "\\)").replace("_", " ")
for ip in ips]
mapping_list.append(f"{formatted_char}: {', '.join(formatted_ips)}")
# Combine all into a single string
result_parts = []
if ips_list:
result_parts.append(", ".join(ips_list))
if mapping_list:
result_parts.extend(mapping_list)
return ", ".join(result_parts)
def process_single_image(
image_path,
model_name="deepghs/pixai-tagger-v0.9-onnx", ###
general_threshold=0.3,
character_threshold=0.85,
progress=None,
idx=0,
total_images=1
):
"""Process a single image and return all formatted outputs."""
try:
if image_path is None:
return "", "", "", "", {}, {}
if progress:
progress((idx)/total_images, desc=f"Processing image {idx+1}/{total_images}")
# Load image from path
pil_image = Image.open(image_path)
# Set thresholds
thresholds = {
'general': general_threshold,
'character': character_threshold
}
# Get all tag categories
all_categories = get_pixai_tags(
pil_image, model_name, thresholds, fmt='all'
)
# Ensure we have at least 3 categories (general, character, rating)
while len(all_categories) < 3:
all_categories += ({},)
general_tags = all_categories[0] if len(all_categories) > 0 else {}
character_tags = all_categories[1] if len(all_categories) > 1 else {}
rating_tags = all_categories[2] if len(all_categories) > 2 else {}
# Get IP detection data
ips_result = get_pixai_tags(pil_image, model_name, thresholds, fmt='ips') or []
ips_mapping = get_pixai_tags(pil_image, model_name, thresholds, fmt='ips_mapping') or {}
# Format character tags (names only)
character_names = [name.replace("(", "\\(").replace(")", "\\)").replace("_", " ") # Replacement shouldn't be necessary here, but I'll do anyway
for name in character_tags.keys()]
character_output = ", ".join(character_names)
# Format general tags (names only)
general_names = [name.replace("(", "\\(").replace(")", "\\)").replace("_", " ")
for name in general_tags.keys()]
general_output = ", ".join(general_names)
# Format IP detection output
ips_output = format_ips_output(ips_result, ips_mapping)
# Format combined tags (Character tags first, then General tags, then IP tags)
combined_parts = []
if character_names:
combined_parts.append(", ".join(character_names))
if general_names:
combined_parts.append(", ".join(general_names))
if ips_output:
combined_parts.append(ips_output)
combined_output = ", ".join(combined_parts)
# Get detailed JSON data
json_data = {
"character_tags": character_tags,
"general_tags": general_tags,
"rating_tags": rating_tags,
"ips_result": ips_result,
"ips_mapping": ips_mapping
}
# Format rating as label-compatible dict
rating_output = {k.replace("(", "\\(").replace(")", "\\)").replace("_", " "): v
for k, v in rating_tags.items()}
return (
character_output, # Character tags
general_output, # General tags
ips_output, # IP Detection
combined_output, # Combined tags
json_data, # Detailed JSON
rating_output # Rating <- Not working atm
)
except Exception as e:
error_msg = f"Error: {str(e)}"
# Return error message for all 6 outputs
return error_msg, error_msg, error_msg, error_msg, {}, {} # 6
"""GPU"""
def unload_model():
"""Explicitly unload the current model from memory"""
global CURRENT_MODEL, CURRENT_MODEL_NAME, CURRENT_TAGS_DF, CURRENT_D_IPS
global CURRENT_PREPROCESS_FUNC, CURRENT_THRESHOLDS, CURRENT_CATEGORY_NAMES
# Delete the model session
if CURRENT_MODEL is not None:
del CURRENT_MODEL
CURRENT_MODEL = None
# Clear other large objects
CURRENT_TAGS_DF = None
CURRENT_D_IPS = None
CURRENT_PREPROCESS_FUNC = None
CURRENT_THRESHOLDS = None
CURRENT_CATEGORY_NAMES = None
CURRENT_MODEL_NAME = None
# Force garbage collection
import gc
gc.collect()
# Clear CUDA cache if using GPU
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
except ImportError:
pass
# print("Model unloaded and memory cleared")
def cleanup_after_processing():
unload_model()
def process_gallery_images(
gallery,
model_name,
general_threshold,
character_threshold,
progress=gr.Progress()
):
"""Process all images in the gallery and return results with download file."""
if not gallery:
return [], "", "", "", {}, {}, {}, None
tag_results = {}
txt_infos = []
output_dir = tempfile.mkdtemp()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
total_images = len(gallery)
timer = Timer()
try:
for idx, image_data in enumerate(gallery):
try:
image_path = image_data[0] if isinstance(image_data, (list, tuple)) else image_data
# Process image
results = process_single_image(
image_path, model_name, general_threshold, character_threshold,
progress, idx, total_images
)
# Store results
tag_results[image_path] = {
'character_tags': results[0],
'general_tags': results[1],
'ips_detection': results[2],
'combined_tags': results[3],
'json_data': results[4],
'rating': results[5]
}
# Create output files with descriptive names
image_name = os.path.splitext(os.path.basename(image_path))[0]
# Save all output files with descriptive prefixes
files_to_create = [
(f"character_tags-{image_name}.txt", results[0]),
(f"general_tags-{image_name}.txt", results[1]),
(f"ips_detection-{image_name}.txt", results[2]),
(f"combined_tags-{image_name}.txt", results[3]),
(f"detailed_json-{image_name}.json", json.dumps(results[4], indent=4, ensure_ascii=False))
]
for file_name, content in files_to_create:
file_path = os.path.join(output_dir, file_name)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content if isinstance(content, str) else content)
txt_infos.append({'path': file_path, 'name': file_name})
# Copy original image
original_image = Image.open(image_path)
image_copy_path = os.path.join(output_dir, f"{image_name}{os.path.splitext(image_path)[1]}")
original_image.save(image_copy_path)
txt_infos.append({'path': image_copy_path, 'name': f"{image_name}{os.path.splitext(image_path)[1]}"})
timer.checkpoint(f"image{idx:02d}, processed")
except Exception as e:
print(f"Error processing image {image_path}: {str(e)}")
print(traceback.format_exc())
continue
# Create zip file
download_zip_path = os.path.join(output_dir, f"Multi-Tagger-{datetime.now().strftime('%Y%m%d-%H%M%S')}.zip")
with zipfile.ZipFile(download_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for info in txt_infos:
zipf.write(info['path'], arcname=info['name'])
# If using GPU, model will auto unload after zip file creation
cleanup_after_processing() # Comment here to turn off this behavior
progress(1.0, desc="Processing complete")
timer.report_all()
print('Processing is complete.')
# Return first image results as default if available even if we are tagging 1000+ images.
first_image_results = ("", "", "", {}, {}, "") # 6
if gallery and len(gallery) > 0:
first_image_path = gallery[0][0] if isinstance(gallery[0], (list, tuple)) else gallery[0]
if first_image_path in tag_results:
result = tag_results[first_image_path]
first_image_results = (
result['character_tags'],
result['general_tags'],
result['combined_tags'],
result['json_data'],
result['rating'],
result['ips_detection']
)
return tag_results, first_image_results[0], first_image_results[1], first_image_results[2], first_image_results[3], first_image_results[4], first_image_results[5], download_zip_path
except Exception as e:
print(f"Error in process_gallery_images: {str(e)}")
print(traceback.format_exc())
progress(1.0, desc="Processing failed")
return {}, "", "", "", {}, {}, "", None
def get_selection_from_gallery(gallery, tag_results, selected_state: gr.SelectData):
"""Handle gallery image selection and update UI with stored results."""
if not selected_state or not tag_results:
return "", "", "", {}, {}, ""
# Get selected image path
selected_value = selected_state.value
if isinstance(selected_value, dict) and 'image' in selected_value:
image_path = selected_value['image']['path']
elif isinstance(selected_value, (list, tuple)) and len(selected_value) > 0:
image_path = selected_value[0]
else:
image_path = str(selected_value)
# Retrieve stored results
if image_path in tag_results:
result = tag_results[image_path]
return (
result['character_tags'],
result['general_tags'],
result['combined_tags'],
result['json_data'],
result['rating'],
result['ips_detection']
)
# Return empty if not found
return "", "", "", {}, {}, ""
def append_gallery(gallery, image):
"""Add a single image to the gallery."""
if gallery is None:
gallery = []
if not image:
return gallery, None
gallery.append(image)
return gallery, None
def extend_gallery(gallery, images):
"""Add multiple images to the gallery."""
if gallery is None:
gallery = []
if not images:
return gallery
gallery.extend(images)
return gallery
def create_pixai_interface():
"""Create the PixAI Gradio interface"""
with gr.Blocks(css=css, fill_width=True) as demo:
# gr.Markdown("Upload anime-style images to extract tags using PixAI")
# State to store results
tag_results = gr.State({})
selected_image = gr.Textbox(label='Selected Image', visible=False)
with gr.Row():
with gr.Column():
# Image upload section
with gr.Column(variant='panel'):
image_input = gr.Image(
label='Upload an Image or clicking paste from clipboard button',
type='filepath',
sources=['upload', 'clipboard'],
height=150
)
with gr.Row():
upload_button = gr.UploadButton(
'Upload multiple images',
file_types=['image'],
file_count='multiple',
size='sm'
)
gallery = gr.Gallery(
columns=2,
show_share_button=False,
interactive=True,
height='auto',
label='Grid of images',
preview=False,
elem_id='custom-gallery'
)
run_button = gr.Button("Analyze Images", variant="primary", size='lg')
model_dropdown = gr.Dropdown(
choices=["deepghs/pixai-tagger-v0.9-onnx"],
value="deepghs/pixai-tagger-v0.9-onnx",
label="Model"
)
# Threshold controls
with gr.Row():
general_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.30, step=0.05,
label="General Tags Threshold", scale=3
)
character_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.85, step=0.05,
label="Character Tags Threshold", scale=3
)
with gr.Row():
clear = gr.ClearButton(
components=[gallery, model_dropdown, general_threshold, character_threshold],
variant='secondary',
size='lg'
)
clear.add([tag_results])
detailed_json_output = gr.JSON(label="Detailed JSON")
with gr.Column(variant='panel'):
download_file = gr.File(label="Download")
# Output blocks
character_tags_output = gr.Textbox(
label="Character tags",
show_copy_button=True,
lines=3
)
general_tags_output = gr.Textbox(
label="General tags",
show_copy_button=True,
lines=3
)
ips_detection_output = gr.Textbox(
label="IPs Detection",
show_copy_button=True,
lines=5
)
combined_tags_output = gr.Textbox(
label="Combined tags",
show_copy_button=True,
lines=6
)
rating_output = gr.Label(label="Rating")
# Clear button targets
clear.add([
download_file,
character_tags_output,
general_tags_output,
ips_detection_output,
combined_tags_output,
rating_output,
detailed_json_output
])
# Event handlers
image_input.change(
append_gallery,
inputs=[gallery, image_input],
outputs=[gallery, image_input]
)
upload_button.upload(
extend_gallery,
inputs=[gallery, upload_button],
outputs=gallery
)
gallery.select(
get_selection_from_gallery,
inputs=[gallery, tag_results],
outputs=[
character_tags_output,
general_tags_output,
combined_tags_output,
detailed_json_output,
rating_output,
ips_detection_output
]
)
run_button.click(
process_gallery_images,
inputs=[gallery, model_dropdown, general_threshold, character_threshold],
outputs=[
tag_results,
character_tags_output,
general_tags_output,
combined_tags_output,
detailed_json_output,
rating_output,
ips_detection_output,
download_file
]
)
gr.Markdown('[Based on Source code for imgutils.tagging.pixai](https://dghs-imgutils.deepghs.org/main/_modules/imgutils/tagging/pixai.html) & [pixai-labs/pixai-tagger-demo](https://huggingface.co/spaces/pixai-labs/pixai-tagger-demo)')
return demo
# Export public API
__all__ = [
'get_pixai_tags',
'process_single_image',
'process_gallery_images',
'create_pixai_interface',
'unload_model',
'cleanup_after_processing'
]