File size: 8,954 Bytes
7fc87fe
ddf863c
7fc87fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf863c
7fc87fe
 
 
 
 
 
 
 
 
 
 
ddf863c
7fc87fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf863c
7fc87fe
 
 
 
ddf863c
7fc87fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import mtdna_backend
import json
# Gradio UI
with gr.Blocks() as interface:
    gr.Markdown("# 🧬 mtDNA Location Classifier (MVP)")

    inputMode = gr.Radio(choices=["Single Accession", "Batch Input"], value="Single Accession", label="Choose Input Mode")

    with gr.Group() as single_input_group:
        single_accession = gr.Textbox(label="Enter Single Accession (e.g., KU131308)")

    with gr.Group(visible=False) as batch_input_group:
        raw_text = gr.Textbox(label="🧬 Paste Accession Numbers (e.g., MF362736.1,MF362738.1,KU131308,MW291678)")
        gr.HTML("""<a href="https://drive.google.com/file/d/1t-TFeIsGVu5Jh3CUZS-VE9jQWzNFCs_c/view?usp=sharing" download target="_blank">Download Example CSV Format</a>""")
        gr.HTML("""<a href="https://docs.google.com/spreadsheets/d/1lKqPp17EfHsshJGZRWEpcNOZlGo3F5qU/edit?usp=sharing&ouid=112390323314156876153&rtpof=true&sd=true" download target="_blank">Download Example Excel Format</a>""")
        file_upload = gr.File(label="πŸ“ Or Upload CSV/Excel File", file_types=[".csv", ".xlsx"], interactive=True, elem_id="file-upload-box")
        


    with gr.Row():
        run_button = gr.Button("πŸ” Submit and Classify")
        reset_button = gr.Button("πŸ”„ Reset")

    status = gr.Markdown(visible=False)

    with gr.Group(visible=False) as results_group:
      with gr.Accordion("Open to See the Result", open=False) as results:  
          with gr.Row():
              output_summary = gr.Markdown(elem_id="output-summary")
              output_flag = gr.Markdown(elem_id="output-flag")
          
          gr.Markdown("---")

      with gr.Accordion("Open to See the Output Table", open=False) as table_accordion:    
          """output_table = gr.Dataframe(

              headers=["Sample ID", "Technique", "Source", "Predicted Location", "Haplogroup", "Inferred Region", "Context Snippet"],

              interactive=False,

              row_count=(5, "dynamic")

          )"""
          output_table = gr.HTML(render=True)


      with gr.Row():
          output_type = gr.Dropdown(choices=["Excel", "JSON", "TXT"], label="Select Output Format", value="Excel")
          download_button = gr.Button("⬇️ Download Output")
      download_file = gr.File(label="Download File Here",visible=False)

      gr.Markdown("---")

      gr.Markdown("### πŸ’¬ Feedback (required)")
      q1 = gr.Textbox(label="1️⃣ Was the inferred location accurate or helpful? Please explain.")
      q2 = gr.Textbox(label="2️⃣ What would improve your experience with this tool?")
      contact = gr.Textbox(label="πŸ“§ Your email or institution (optional)")
      submit_feedback = gr.Button("βœ… Submit Feedback")
      feedback_status = gr.Markdown()

    # Functions

    def toggle_input_mode(mode):
        if mode == "Single Accession":
            return gr.update(visible=True), gr.update(visible=False)
        else:
            return gr.update(visible=False), gr.update(visible=True)

    def classify_with_loading():
        return gr.update(value="⏳ Please wait... processing...",visible=True)  # Show processing message
         
    def classify_dynamic(single_accession, file, text, mode):
        if mode == "Single Accession":
            return classify_main(single_accession)  + (gr.update(visible=False),)
        else:
            #return summarize_batch(file, text) + (gr.update(visible=False),)  # Hide processing message
            return classify_mulAcc(file, text) + (gr.update(visible=False),)  # Hide processing message

    # for single accession
    def classify_main(accession):
        table, summary, labelAncient_Modern, explain_label = mtdna_backend.summarize_results(accession)
        flag_output = f"### 🏺 Ancient/Modern Flag\n**{labelAncient_Modern}**\n\n_Explanation:_ {explain_label}"
        return (
            #table,
            make_html_table(table),
            summary,
            flag_output,
            gr.update(visible=True),
            gr.update(visible=False)
        )
    # for batch accessions
    def classify_mulAcc(file, text):
        table, summary, flag_output, gr1, gr2 = mtdna_backend.summarize_batch(file, text)
        #flag_output = f"### 🏺 Ancient/Modern Flag\n**{labelAncient_Modern}**\n\n_Explanation:_ {explain_label}"
        return (
            #table,
            make_html_table(table),
            summary,
            flag_output,
            gr.update(visible=True),
            gr.update(visible=False)
        )

    def make_html_table(rows):
      html = """

      <div style='overflow-x: auto; padding: 10px;'>

          <div style='max-height: 400px; overflow-y: auto; border: 1px solid #444; border-radius: 8px;'>

              <table style='width:100%; border-collapse: collapse; table-layout: auto; font-size: 14px; color: #f1f1f1; background-color: #1e1e1e;'>

                  <thead style='position: sticky; top: 0; background-color: #2c2c2c; z-index: 1;'>

                      <tr>

      """
      headers = ["Sample ID", "Technique", "Source", "Predicted Location", "Haplogroup", "Inferred Region", "Context Snippet"]
      html += "".join(
          f"<th style='padding: 10px; border: 1px solid #555; text-align: left; white-space: nowrap;'>{h}</th>"
          for h in headers
      )
      html += "</tr></thead><tbody>"

      for row in rows:
          html += "<tr>"
          for i, col in enumerate(row):
              header = headers[i]
              style = "padding: 10px; border: 1px solid #555; vertical-align: top;"

              # For specific columns like Haplogroup, force nowrap
              if header in ["Haplogroup", "Sample ID", "Technique"]:
                  style += " white-space: nowrap; text-overflow: ellipsis; max-width: 200px; overflow: hidden;"

              if header == "Source" and isinstance(col, str) and col.strip().lower().startswith("http"):
                  col = f"<a href='{col}' target='_blank' style='color: #4ea1f3; text-decoration: underline;'>{col}</a>"

              html += f"<td style='{style}'>{col}</td>"
          html += "</tr>"

      html += "</tbody></table></div></div>"
      return html
  

    def reset_fields():
        return (
            gr.update(value=""),  # single_accession
            gr.update(value=""),  # raw_text
            gr.update(value=None), # file_upload
            gr.update(value="Single Accession"), # inputMode
            gr.update(value=[], visible=True), # output_table
            gr.update(value="", visible=True), # output_summary
            gr.update(value="", visible=True), # output_flag
            gr.update(visible=False), # status
            gr.update(visible=False)  # results_group
        )

    inputMode.change(fn=toggle_input_mode, inputs=inputMode, outputs=[single_input_group, batch_input_group])
    run_button.click(fn=classify_with_loading, inputs=[], outputs=[status])
    run_button.click(
        fn=classify_dynamic,
        inputs=[single_accession, file_upload, raw_text, inputMode],
        outputs=[output_table, output_summary, output_flag, results_group, status]
    )
    reset_button.click(
        fn=reset_fields,
        inputs=[],
        outputs=[
            single_accession, raw_text, file_upload, inputMode,
            output_table, output_summary, output_flag,
            status, results_group
        ]
    )

    download_button.click(
      fn=mtdna_backend.save_batch_output, 
      inputs=[output_table, output_summary, output_flag, output_type], 
      outputs=[download_file])

    submit_feedback.click(
        fn=mtdna_backend.store_feedback_to_google_sheets, inputs=[single_accession, q1, q2, contact], outputs=feedback_status
    )
        # Custom CSS styles
    gr.HTML("""

    <style>

      /* Ensures both sections are equally spaced with the same background size */

      #output-summary, #output-flag {

          background-color: #f0f4f8; /* Light Grey for both */

          padding: 20px;

          border-radius: 10px;

          margin-top: 10px;

          width: 100%; /* Ensure full width */

          min-height: 150px; /* Ensures both have a minimum height */

          box-sizing: border-box; /* Prevents padding from increasing size */

          display: flex;

          flex-direction: column;

          justify-content: space-between;

      }

      

      /* Specific background colors */

      #output-summary {

          background-color: #434a4b; 

      }



      #output-flag {

          background-color: #141616; 

      }



      /* Ensuring they are in a row and evenly spaced */

      .gradio-row {

          display: flex;

          justify-content: space-between;

          width: 100%;

      }

    </style>

    """)


interface.launch(share=True,debug=True)