File size: 23,058 Bytes
7fc87fe
ddf863c
7fc87fe
6be4ec1
 
 
 
7fc87fe
6be4ec1
 
 
 
 
 
7fc87fe
 
 
6be4ec1
 
 
7fc87fe
6be4ec1
 
7fc87fe
6be4ec1
 
 
 
 
 
 
 
 
 
7fc87fe
 
 
6be4ec1
7fc87fe
 
 
6be4ec1
7fc87fe
6be4ec1
 
 
 
7fc87fe
6be4ec1
7fc87fe
 
 
 
 
 
 
6be4ec1
 
 
7fc87fe
 
 
 
 
 
 
 
 
 
 
6be4ec1
 
 
 
 
7fc87fe
 
 
 
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
 
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
 
 
 
 
 
 
 
 
6be4ec1
7fc87fe
 
 
 
 
 
 
 
 
 
 
 
 
6be4ec1
 
 
7fc87fe
 
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
 
 
 
 
 
 
 
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
6be4ec1
 
 
 
 
 
7fc87fe
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
 
 
6be4ec1
 
 
7fc87fe
 
ddf863c
6be4ec1
 
7fc87fe
 
6be4ec1
 
 
 
7fc87fe
6be4ec1
 
 
7fc87fe
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
6be4ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc87fe
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import gradio as gr
import mtdna_backend
import json
from iterate3 import data_preprocess, model, pipeline
import os
import hashlib
import threading
# Gradio UI
#stop_flag = gr.State(value=False)
class StopFlag:
    def __init__(self):
        self.value = False
global_stop_flag = StopFlag()  # Shared between run + stop

with gr.Blocks() as interface:
    gr.Markdown("# 🧬 mtDNA Location Classifier (MVP)")

    #inputMode = gr.Radio(choices=["Single Accession", "Batch Input"], value="Single Accession", label="Choose Input Mode")
    user_email = gr.Textbox(label="πŸ“§ Your email (used to track free quota)")
    usage_display = gr.Markdown("", visible=False)

    # with gr.Group() as single_input_group:
    #     single_accession = gr.Textbox(label="Enter Single Accession (e.g., KU131308)")

    # with gr.Group(visible=False) as batch_input_group:
    #     raw_text = gr.Textbox(label="🧬 Paste Accession Numbers (e.g., MF362736.1,MF362738.1,KU131308,MW291678)")
    #     resume_file = gr.File(label="πŸ—ƒοΈ Previously saved Excel output (optional)", file_types=[".xlsx"], interactive=True)
    #     gr.HTML("""<a href="https://drive.google.com/file/d/1t-TFeIsGVu5Jh3CUZS-VE9jQWzNFCs_c/view?usp=sharing" download target="_blank">Download Example CSV Format</a>""")
    #     gr.HTML("""<a href="https://docs.google.com/spreadsheets/d/1lKqPp17EfHsshJGZRWEpcNOZlGo3F5qU/edit?usp=sharing&ouid=112390323314156876153&rtpof=true&sd=true" download target="_blank">Download Example Excel Format</a>""")
    #     file_upload = gr.File(label="πŸ“ Or Upload CSV/Excel File", file_types=[".csv", ".xlsx"], interactive=True, elem_id="file-upload-box")
    raw_text = gr.Textbox(label="🧚 Input Accession Number(s) (single (KU131308) or comma-separated (e.g., MF362736.1,MF362738.1,KU131308,MW291678))")
    #resume_file = gr.File(label="πŸ—ƒοΈ Previously saved Excel output (optional)", file_types=[".xlsx"], interactive=True)
    gr.HTML("""<a href="https://docs.google.com/spreadsheets/d/1lKqPp17EfHsshJGZRWEpcNOZlGo3F5qU/edit?usp=sharing" download target="_blank">Download Example Excel Format</a>""")
    file_upload = gr.File(label="πŸ“ Or Upload CSV/Excel File", file_types=[".csv", ".xlsx"], interactive=True)

    with gr.Row():
        run_button = gr.Button("πŸ” Submit and Classify")
        stop_button = gr.Button("❌ Stop Batch", visible=True)
        reset_button = gr.Button("πŸ”„ Reset")

    status = gr.Markdown(visible=False)
    
    with gr.Group(visible=False) as results_group:
      # with gr.Accordion("Open to See the Result", open=False) as results:  
      #     with gr.Row():
      #         output_summary = gr.Markdown(elem_id="output-summary")
      #         output_flag = gr.Markdown(elem_id="output-flag")
          
      #     gr.Markdown("---")

      with gr.Accordion("Open to See the Output Table", open=False) as table_accordion:    
          output_table = gr.HTML(render=True)

      with gr.Row():
          output_type = gr.Dropdown(choices=["Excel", "JSON", "TXT"], label="Select Output Format", value="Excel")
          download_button = gr.Button("⬇️ Download Output")
      #download_file = gr.File(label="Download File Here",visible=False)
      download_file = gr.File(label="Download File Here", visible=False, interactive=True)
      progress_box = gr.Textbox(label="Live Processing Log", lines=20, interactive=False)

      gr.Markdown("---")

      gr.Markdown("### πŸ’¬ Feedback (required)")
      q1 = gr.Textbox(label="1️⃣ Was the inferred location accurate or helpful? Please explain.")
      q2 = gr.Textbox(label="2️⃣ What would improve your experience with this tool?")
      contact = gr.Textbox(label="πŸ“§ Your email or institution (optional)")
      submit_feedback = gr.Button("βœ… Submit Feedback")
      feedback_status = gr.Markdown()

    # Functions
    # def toggle_input_mode(mode):
    #     if mode == "Single Accession":
    #         return gr.update(visible=True), gr.update(visible=False)
    #     else:
    #         return gr.update(visible=False), gr.update(visible=True)

    def classify_with_loading():
        return gr.update(value="⏳ Please wait... processing...",visible=True)  # Show processing message
         
    # def classify_dynamic(single_accession, file, text, resume, email, mode):
    #     if mode == "Single Accession":
    #         return classify_main(single_accession)  + (gr.update(visible=False),)
    #     else:
    #         #return summarize_batch(file, text) + (gr.update(visible=False),)  # Hide processing message
    #         return classify_mulAcc(file, text, resume) + (gr.update(visible=False),)  # Hide processing message
    # Logging helpers defined early to avoid NameError
    

    # def classify_dynamic(single_accession, file, text, resume, email, mode):
    #   if mode == "Single Accession":
    #       return classify_main(single_accession) + (gr.update(value="", visible=False),)
    #   else:
    #       return classify_mulAcc(file, text, resume, email, log_callback=real_time_logger, log_collector=log_collector)

    # for single accession
    # def classify_main(accession):
    #     #table, summary, labelAncient_Modern, explain_label = mtdna_backend.summarize_results(accession)
    #     table = mtdna_backend.summarize_results(accession)
    #     #flag_output = f"### 🏺 Ancient/Modern Flag\n**{labelAncient_Modern}**\n\n_Explanation:_ {explain_label}"
    #     return (
    #         #table,
    #         make_html_table(table),
    #         # summary,
    #         # flag_output,
    #         gr.update(visible=True),
    #         gr.update(visible=False),
    #         gr.update(visible=False)
    #     )
    
    #stop_flag = gr.State(value=False)
    #stop_flag = StopFlag()

    # def stop_batch(stop_flag):
    #   stop_flag.value = True
    #   return gr.update(value="❌ Stopping...", visible=True), stop_flag
    def stop_batch():
      global_stop_flag.value = True
      return gr.update(value="❌ Stopping...", visible=True)

    # def threaded_batch_runner(file, text, email):
    #   global_stop_flag.value = False
    #   log_lines = []

    #   def update_log(line):
    #       log_lines.append(line)
    #       yield (
    #           gr.update(visible=False),  # output_table (not yet)
    #           gr.update(visible=False),  # results_group
    #           gr.update(visible=False),  # download_file
    #           gr.update(visible=False),  # usage_display
    #           gr.update(value="⏳ Still processing...", visible=True),  # status
    #           gr.update(value="\n".join(log_lines))  # progress_box
    #       )

    #   # Start a dummy update to say "Starting..."
    #   yield from update_log("πŸš€ Starting batch processing...")

    #   rows, file_path, count, final_log, warning = mtdna_backend.summarize_batch(
    #       file=file,
    #       raw_text=text,
    #       resume_file=None,
    #       user_email=email,
    #       stop_flag=global_stop_flag,
    #       yield_callback=lambda line: (yield from update_log(line))
    #   )

    #   html = make_html_table(rows)
    #   file_update = gr.update(value=file_path, visible=True) if os.path.exists(file_path) else gr.update(visible=False)
    #   usage_or_warning_text = f"**{count}** samples used by this email." if email.strip() else warning

    #   yield (
    #       html,
    #       gr.update(visible=True),        # results_group
    #       file_update,                    # download_file
    #       gr.update(value=usage_or_warning_text, visible=True),
    #       gr.update(value="βœ… Done", visible=True),
    #       gr.update(value=final_log)
    #   )
    
    def threaded_batch_runner(file=None, text="", email=""):
      print("πŸ“§ EMAIL RECEIVED:", email)
      import tempfile
      from mtdna_backend import (
          extract_accessions_from_input,
          summarize_results,
          save_to_excel,
          hash_user_id,
          increment_usage,
      )
      import os

      global_stop_flag.value = False  # reset stop flag

      tmp_dir = tempfile.mkdtemp()
      output_file_path = os.path.join(tmp_dir, "batch_output_live.xlsx")
      limited_acc = 50 + (10 if email.strip() else 0)

      # Step 1: Parse input
      accessions, error = extract_accessions_from_input(file, text)
      if error:
          yield (
              "",                          # output_table
              gr.update(visible=False),   # results_group
              gr.update(visible=False),   # download_file
              "",                          # usage_display
              "❌ Error",                  # status
              str(error)                        # progress_box
          )
          return

      total = len(accessions)
      if total > limited_acc:
          accessions = accessions[:limited_acc]
          warning = f"⚠️ Only processing first {limited_acc} accessions."
      else:
          warning = f"βœ… All {total} accessions will be processed."

      all_rows = []
      log_lines = []

      # Step 2: Loop through accessions
      for i, acc in enumerate(accessions):
          if global_stop_flag.value:
              log_lines.append(f"πŸ›‘ Stopped at {acc} ({i+1}/{total})")
              usage_text = ""
              if email.strip():
                  # user_hash = hash_user_id(email)
                  # usage_count = increment_usage(user_hash, len(all_rows))
                  usage_count = increment_usage(email, len(all_rows))
                  usage_text = f"**{usage_count}** samples used by this email. Ten more samples are added first (you now have 60 limited accessions), then wait we will contact you via this email."
              else:
                  usage_text = f"The limited accession is 50. The user has used {len(all_rows)}, and only {50-len(all_rows)} left."    
              yield (
                  make_html_table(all_rows),
                  gr.update(visible=True),
                  gr.update(value=output_file_path, visible=True),
                  gr.update(value=usage_text, visible=True),
                  "πŸ›‘ Stopped",
                  "\n".join(log_lines)
              )
              return

          log_lines.append(f"[{i+1}/{total}] Processing {acc}")
          yield (
              make_html_table(all_rows),
              gr.update(visible=True),
              gr.update(visible=False),
              "",
              "⏳ Processing...",
              "\n".join(log_lines)
          )

          try:
              rows = summarize_results(acc)
              all_rows.extend(rows)
              save_to_excel(all_rows, "", "", output_file_path, is_resume=False)
              log_lines.append(f"βœ… Processed {acc} ({i+1}/{total})")
          except Exception as e:
              log_lines.append(f"❌ Failed to process {acc}: {e}")

          yield (
              make_html_table(all_rows),
              gr.update(visible=True),
              gr.update(visible=False),
              "",
              "⏳ Processing...",
              "\n".join(log_lines)
          )

      # Final update
      usage_text = ""
      if email.strip():
          # user_hash = hash_user_id(email)
          # usage_count = increment_usage(user_hash, len(all_rows))
          usage_count = increment_usage(email, len(all_rows))
          usage_text = f"**{usage_count}** samples used by this email. Ten more samples are added first (you now have 60 limited accessions), then wait we will contact you via this email."
      else:
          usage_text = f"The limited accession is 50. The user has used {len(all_rows)}, and only {50-len(all_rows)} left."
      yield (
          make_html_table(all_rows),
          gr.update(visible=True),
          gr.update(value=output_file_path, visible=True),
          gr.update(value=usage_text, visible=True),
          "βœ… Done",
          "\n".join(log_lines)
      )

    # def threaded_batch_runner(file=None, text="", email=""):
    #   global_stop_flag.value = False

    #   # Dummy test output that matches expected schema
    #   return (
    #       "<div>βœ… Dummy output table</div>",   # HTML string
    #       gr.update(visible=True),             # Group visibility
    #       gr.update(visible=False),            # Download file
    #       "**0** samples used.",               # Markdown
    #       "βœ… Done",                           # Status string
    #       "Processing finished."               # Progress string
    #   )

    
    # def classify_mulAcc(file, text, resume, email, log_callback=None, log_collector=None):
    #     stop_flag.value = False
    #     return threaded_batch_runner(file, text, resume, email, status, stop_flag, log_callback=log_callback, log_collector=log_collector)
    

    def make_html_table(rows):
      html = """

      <div style='overflow-x: auto; padding: 10px;'>

          <div style='max-height: 400px; overflow-y: auto; border: 1px solid #444; border-radius: 8px;'>

              <table style='width:100%; border-collapse: collapse; table-layout: auto; font-size: 14px; color: #f1f1f1; background-color: #1e1e1e;'>

                  <thead style='position: sticky; top: 0; background-color: #2c2c2c; z-index: 1;'>

                      <tr>

      """
      headers = ["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Time cost"]
      html += "".join(
          f"<th style='padding: 10px; border: 1px solid #555; text-align: left; white-space: nowrap;'>{h}</th>"
          for h in headers
      )
      html += "</tr></thead><tbody>"

      for row in rows:
          html += "<tr>"
          for i, col in enumerate(row):
              header = headers[i]
              style = "padding: 10px; border: 1px solid #555; vertical-align: top;"

              # For specific columns like Haplogroup, force nowrap
              if header in ["Country Explanation", "Sample Type Explanation"]:
                style += " max-width: 400px; word-wrap: break-word; white-space: normal;"
              elif header in ["Sample ID", "Predicted Country", "Predicted Sample Type", "Time cost"]:
                  style += " white-space: nowrap; text-overflow: ellipsis; max-width: 200px; overflow: hidden;"

              # if header == "Sources" and isinstance(col, str) and col.strip().lower().startswith("http"):
              #     col = f"<a href='{col}' target='_blank' style='color: #4ea1f3; text-decoration: underline;'>{col}</a>"

              #html += f"<td style='{style}'>{col}</td>"
              if header == "Sources" and isinstance(col, str):
                  links = [f"<a href='{url.strip()}' target='_blank' style='color: #4ea1f3; text-decoration: underline;'>{url.strip()}</a>" for url in col.strip().split("\n") if url.strip()]
                  col = "- "+"<br>- ".join(links)
              elif isinstance(col, str):
                  # lines = []
                  # for line in col.split("\n"):
                  #     line = line.strip()
                  #     if not line:
                  #         continue
                  #     if line.lower().startswith("rag_llm-"):
                  #         content = line[len("rag_llm-"):].strip()
                  #         line = f"{content} (Method: RAG_LLM)"
                  #     lines.append(f"- {line}")
                  col = col.replace("\n", "<br>")
                  #col = col.replace("\t", "&nbsp;&nbsp;&nbsp;&nbsp;")
                  #col = "<br>".join(lines)

              html += f"<td style='{style}'>{col}</td>"
          html += "</tr>"

      html += "</tbody></table></div></div>"
      return html
  

    # def reset_fields():
    #     global_stop_flag.value = False  # πŸ’‘ Add this to reset the flag
    #     return (
    #         #gr.update(value=""),  # single_accession
    #         gr.update(value=""),  # raw_text
    #         gr.update(value=None), # file_upload
    #         #gr.update(value=None),  # resume_file
    #         #gr.update(value="Single Accession"), # inputMode
    #         gr.update(value=[], visible=True), # output_table
    #         # gr.update(value="", visible=True), # output_summary
    #         # gr.update(value="", visible=True), # output_flag
    #         gr.update(visible=False), # status
    #         gr.update(visible=False),  # results_group
    #         gr.update(value="", visible=False),  # usage_display
    #         gr.update(value="", visible=False),  # progress_box
    #     )
    def reset_fields():
      global_stop_flag.value = False  # Reset the stop flag

      return (
          gr.update(value=""),          # raw_text
          gr.update(value=None),        # file_upload
          gr.update(value=[], visible=True),   # output_table
          gr.update(value="", visible=True),   # status β€” reset and make visible again
          gr.update(visible=False),     # results_group
          gr.update(value="", visible=True),   # usage_display β€” reset and make visible again
          gr.update(value="", visible=True),   # progress_box β€” reset AND visible!
      )
    #inputMode.change(fn=toggle_input_mode, inputs=inputMode, outputs=[single_input_group, batch_input_group])
    #run_button.click(fn=classify_with_loading, inputs=[], outputs=[status])
    # run_button.click(
    #     fn=classify_dynamic,
    #     inputs=[single_accession, file_upload, raw_text, resume_file,user_email,inputMode],
    #     outputs=[output_table, 
    #     #output_summary, output_flag, 
    #     results_group, download_file, usage_display,status, progress_box]
    # )
    
    # run_button.click(
    #     fn=threaded_batch_runner,
    #     #inputs=[file_upload, raw_text, resume_file, user_email],
    #     inputs=[file_upload, raw_text, user_email],
    #     outputs=[output_table, results_group, download_file, usage_display, status, progress_box]
    # )
#     run_button.click(
#     fn=threaded_batch_runner,
#     inputs=[file_upload, raw_text, user_email],
#     outputs=[output_table, results_group, download_file, usage_display, status, progress_box],
#     every=0.5  # <-- this tells Gradio to expect streaming
# )
    # output_table = gr.HTML()
    # results_group = gr.Group(visible=False)
    # download_file = gr.File(visible=False)
    # usage_display = gr.Markdown(visible=False)
    # status = gr.Markdown(visible=False)
    # progress_box = gr.Textbox(visible=False)

#     run_button.click(
#     fn=threaded_batch_runner,
#     inputs=[file_upload, raw_text, user_email],
#     outputs=[output_table, results_group, download_file, usage_display, status, progress_box],
#     every=0.5,  # streaming enabled
#     show_progress="full"
# )
    print("🎯 DEBUG COMPONENT TYPES")
    print(type(output_table))
    print(type(results_group))
    print(type(download_file))
    print(type(usage_display))
    print(type(status))
    print(type(progress_box))
    

    # interface.stream(
    #     fn=threaded_batch_runner,
    #     inputs=[file_upload, raw_text, user_email],
    #     outputs=[output_table, results_group, download_file, usage_display, status, progress_box],
    #     trigger=run_button,
    #     every=0.5,
    #     show_progress="full",
    # )
    interface.queue()  # No arguments here!

    run_button.click(
        fn=threaded_batch_runner,
        inputs=[file_upload, raw_text, user_email],
        outputs=[output_table, results_group, download_file, usage_display, status, progress_box],
        concurrency_limit=1,  # βœ… correct in Gradio 5.x
        queue=True,            # βœ… ensure the queue is used
        #every=0.5
    )
    



    stop_button.click(fn=stop_batch, inputs=[], outputs=[status])

    # reset_button.click(
    #     #fn=reset_fields,
    #     fn=lambda: (
    #         gr.update(value=""), gr.update(value=""), gr.update(value=None), gr.update(value=None), gr.update(value="Single Accession"),
    #         gr.update(value=[], visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value="", visible=False), gr.update(value="", visible=False)
    #     ),
    #     inputs=[],
    #     outputs=[
    #         single_accession, raw_text, file_upload, resume_file,inputMode,
    #         output_table,# output_summary, output_flag,
    #         status, results_group, usage_display, progress_box
    #     ]
    # )
    #stop_button.click(fn=lambda sf: (gr.update(value="❌ Stopping...", visible=True), setattr(sf, "value", True) or sf), inputs=[gr.State(stop_flag)], outputs=[status, gr.State(stop_flag)])

    reset_button.click(
        fn=reset_fields,
        inputs=[],
        #outputs=[raw_text, file_upload, resume_file, output_table, status, results_group, usage_display, progress_box]
        outputs=[raw_text, file_upload, output_table, status, results_group, usage_display, progress_box]
    )  

    download_button.click(
      fn=mtdna_backend.save_batch_output, 
      #inputs=[output_table, output_summary, output_flag, output_type], 
      inputs=[output_table, output_type], 
      outputs=[download_file])

    # submit_feedback.click(
    #     fn=mtdna_backend.store_feedback_to_google_sheets, 
    #     inputs=[single_accession, q1, q2, contact], outputs=feedback_status
    # )
    submit_feedback.click(
        fn=mtdna_backend.store_feedback_to_google_sheets,
        inputs=[raw_text, q1, q2, contact],
        outputs=[feedback_status]
    )
    #     # Custom CSS styles
    # gr.HTML("""
    # <style>
    #   /* Ensures both sections are equally spaced with the same background size */
    #   #output-summary, #output-flag {
    #       background-color: #f0f4f8; /* Light Grey for both */
    #       padding: 20px;
    #       border-radius: 10px;
    #       margin-top: 10px;
    #       width: 100%; /* Ensure full width */
    #       min-height: 150px; /* Ensures both have a minimum height */
    #       box-sizing: border-box; /* Prevents padding from increasing size */
    #       display: flex;
    #       flex-direction: column;
    #       justify-content: space-between;
    #   }
      
    #   /* Specific background colors */
    #   #output-summary {
    #       background-color: #434a4b; 
    #   }

    #   #output-flag {
    #       background-color: #141616; 
    #   }

    #   /* Ensuring they are in a row and evenly spaced */
    #   .gradio-row {
    #       display: flex;
    #       justify-content: space-between;
    #       width: 100%;
    #   }
    # </style>
    # """)


interface.launch(share=True,debug=True)