File size: 21,358 Bytes
7fc87fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# mtDNA Location Classifier MVP (Google Colab)
# Accepts accession number → Fetches PubMed ID + isolate name → Gets abstract → Predicts location
import os
import subprocess
import re
from Bio import Entrez
import fitz
import spacy
from spacy.cli import download
from NER.PDF import pdf
from NER.WordDoc import wordDoc
from NER.html import extractHTML
from NER.word2Vec import word2vec
from transformers import pipeline
import urllib.parse, requests
from pathlib import Path
from upgradeClassify import filter_context_for_sample, infer_location_for_sample
# Set your email (required by NCBI Entrez)
#Entrez.email = "your-email@example.com"
import nltk

nltk.download("stopwords")
nltk.download("punkt")
nltk.download('punkt_tab')
# Step 1: Get PubMed ID from Accession using EDirect

'''def get_info_from_accession(accession):

    cmd = f'{os.environ["HOME"]}/edirect/esummary -db nuccore -id {accession} -format medline | egrep "PUBMED|isolate"'

    result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)

    output = result.stdout

    pubmedID, isolate = "", ""

    for line in output.split("\n"):

      if len(line) > 0:

        if "PUBMED" in line:

          pubmedID = line.split()[-1]

        if "isolate" in line:  # Check for isolate information

          # Try direct GenBank annotation: /isolate="XXX"

          match1 = re.search(r'/isolate\s*=\s*"([^"]+)"', line)  # search on current line

          if match1:

            isolate = match1.group(1)

          else:

            # Try from DEFINITION line: ...isolate XXX...

            match2 = re.search(r'isolate\s+([A-Za-z0-9_-]+)', line) # search on current line

            if match2:

              isolate = match2.group(1)'''
from Bio import Entrez, Medline
import re

Entrez.email = "your_email@example.com"

def get_info_from_accession(accession):
    try:
        handle = Entrez.efetch(db="nuccore", id=accession, rettype="medline", retmode="text")
        text = handle.read()
        handle.close()

        # Extract PUBMED ID from the Medline text
        pubmed_match = re.search(r'PUBMED\s+(\d+)', text)
        pubmed_id = pubmed_match.group(1) if pubmed_match else ""

        # Extract isolate if available
        isolate_match = re.search(r'/isolate="([^"]+)"', text)
        if not isolate_match:
            isolate_match = re.search(r'isolate\s+([A-Za-z0-9_-]+)', text)
        isolate = isolate_match.group(1) if isolate_match else ""

        if not pubmed_id:
            print(f"⚠️ No PubMed ID found for accession {accession}")

        return pubmed_id, isolate

    except Exception as e:
        print("❌ Entrez error:", e)
        return "", ""
# Step 2: Get doi link to access the paper
'''def get_doi_from_pubmed_id(pubmed_id):

    cmd = f'{os.environ["HOME"]}/edirect/esummary -db pubmed -id {pubmed_id} -format medline | grep -i "AID"'

    result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)

    output = result.stdout



    doi_pattern = r'10\.\d{4,9}/[-._;()/:A-Z0-9]+(?=\s*\[doi\])'

    match = re.search(doi_pattern, output, re.IGNORECASE)



    if match:

        return match.group(0)

    else:

        return None  # or raise an Exception with a helpful message'''

def get_doi_from_pubmed_id(pubmed_id):
    try:
        handle = Entrez.efetch(db="pubmed", id=pubmed_id, rettype="medline", retmode="text")
        records = list(Medline.parse(handle))
        handle.close()

        if not records:
            return None
        
        record = records[0]
        if "AID" in record:
            for aid in record["AID"]:
                if "[doi]" in aid:
                    return aid.split(" ")[0]  # extract the DOI

        return None

    except Exception as e:
        print(f"❌ Failed to get DOI from PubMed ID {pubmed_id}: {e}")
        return None


# Step 3: Extract Text: Get the paper (html text), sup. materials (pdf, doc, excel) and do text-preprocessing
# Step 3.1: Extract Text
# sub: download excel file
def download_excel_file(url, save_path="temp.xlsx"):
    if "view.officeapps.live.com" in url:
        parsed_url = urllib.parse.parse_qs(urllib.parse.urlparse(url).query)
        real_url = urllib.parse.unquote(parsed_url["src"][0])
        response = requests.get(real_url)
        with open(save_path, "wb") as f:
            f.write(response.content)
        return save_path
    elif url.startswith("http") and (url.endswith(".xls") or url.endswith(".xlsx")):
        response = requests.get(url)
        response.raise_for_status()  # Raises error if download fails
        with open(save_path, "wb") as f:
            f.write(response.content)
        return save_path
    else:
        print("URL must point directly to an .xls or .xlsx file\n or it already downloaded.")
        return url
def get_paper_text(doi,id,manualLinks=None):
  # create the temporary folder to contain the texts
  folder_path = Path("data/"+str(id))
  if not folder_path.exists():
      cmd = f'mkdir data/{id}'
      result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
      print("data/"+str(id) +" created.")
  else:
      print("data/"+str(id) +" already exists.")
  saveLinkFolder = "data/"+id

  link = 'https://doi.org/' + doi
  '''textsToExtract = { "doiLink":"paperText"

                        "file1.pdf":"text1",

                        "file2.doc":"text2",

                        "file3.xlsx":excelText3'''
  textsToExtract = {}
  # get the file to create listOfFile for each id
  html = extractHTML.HTML("",link)
  jsonSM = html.getSupMaterial()
  text = ""
  links  = [link] + sum((jsonSM[key] for key in jsonSM),[])
  if manualLinks != None:
    links += manualLinks
  for l in links:
    # get the main paper
    name = l.split("/")[-1]
    file_path = folder_path / name
    if l == link:
      text = html.getListSection()
      textsToExtract[link] = text
    elif l.endswith(".pdf"):
      if file_path.is_file():
          l = saveLinkFolder + "/" + name
          print("File exists.")
      p = pdf.PDF(l,saveLinkFolder,doi)
      f = p.openPDFFile()
      pdf_path = saveLinkFolder + "/" + l.split("/")[-1]
      doc = fitz.open(pdf_path)
      text = "\n".join([page.get_text() for page in doc])
      textsToExtract[l] = text
    elif l.endswith(".doc") or l.endswith(".docx"):
      d = wordDoc.wordDoc(l,saveLinkFolder)
      text = d.extractTextByPage()
      textsToExtract[l] = text
    elif l.split(".")[-1].lower() in "xlsx":
      wc = word2vec.word2Vec()
      # download excel file if it not downloaded yet
      savePath = saveLinkFolder +"/"+ l.split("/")[-1]
      excelPath = download_excel_file(l, savePath)
      corpus = wc.tableTransformToCorpusText([],excelPath)
      text = ''
      for c in corpus:
        para = corpus[c]
        for words in para:
          text += " ".join(words)
      textsToExtract[l] = text
  # delete folder after finishing getting text
  #cmd = f'rm -r data/{id}'
  #result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
  return textsToExtract
# Step 3.2: Extract context
def extract_context(text, keyword, window=500):
    # firstly try accession number
    idx = text.find(keyword)
    if idx == -1:
        return "Sample ID not found."
    return text[max(0, idx-window): idx+window]
def extract_relevant_paragraphs(text, accession, keep_if=None, isolate=None):
    if keep_if is None:
        keep_if = ["sample", "method", "mtdna", "sequence", "collected", "dataset", "supplementary", "table"]

    outputs = ""
    text = text.lower()

    # If isolate is provided, prioritize paragraphs that mention it
    # If isolate is provided, prioritize paragraphs that mention it
    if accession and accession.lower() in text:
        if extract_context(text, accession.lower(), window=700) != "Sample ID not found.":
            outputs += extract_context(text, accession.lower(), window=700)       
    if isolate and isolate.lower() in text:
        if extract_context(text, isolate.lower(), window=700) != "Sample ID not found.":
            outputs += extract_context(text, isolate.lower(), window=700)
    for keyword in keep_if:
        para = extract_context(text, keyword)
        if para and para not in outputs:
            outputs += para + "\n"
    return outputs
# Step 4: Classification for now (demo purposes)
# 4.1: Using a HuggingFace model (question-answering)
def infer_fromQAModel(context, question="Where is the mtDNA sample from?"):
    try:
        qa = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
        result = qa({"context": context, "question": question})
        return result.get("answer", "Unknown")
    except Exception as e:
        return f"Error: {str(e)}"

# 4.2: Infer from haplogroup
# Load pre-trained spaCy model for NER
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

# Define the haplogroup-to-region mapping (simple rule-based)
import csv

def load_haplogroup_mapping(csv_path):
    mapping = {}
    with open(csv_path) as f:
        reader = csv.DictReader(f)
        for row in reader:
            mapping[row["haplogroup"]] = [row["region"],row["source"]]
    return mapping

# Function to extract haplogroup from the text
def extract_haplogroup(text):
    match = re.search(r'\bhaplogroup\s+([A-Z][0-9a-z]*)\b', text)
    if match:
        submatch = re.match(r'^[A-Z][0-9]*', match.group(1))
        if submatch:
            return submatch.group(0)
        else:
            return match.group(1)  # fallback
    fallback = re.search(r'\b([A-Z][0-9a-z]{1,5})\b', text)
    if fallback:
        return fallback.group(1)
    return None


# Function to extract location based on NER
def extract_location(text):
    doc = nlp(text)
    locations = []
    for ent in doc.ents:
        if ent.label_ == "GPE":  # GPE = Geopolitical Entity (location)
            locations.append(ent.text)
    return locations

# Function to infer location from haplogroup
def infer_location_from_haplogroup(haplogroup):
  haplo_map = load_haplogroup_mapping("data/haplogroup_regions_extended.csv")
  return haplo_map.get(haplogroup, ["Unknown","Unknown"])

# Function to classify the mtDNA sample
def classify_mtDNA_sample_from_haplo(text):
    # Extract haplogroup
    haplogroup = extract_haplogroup(text)
    # Extract location based on NER
    locations = extract_location(text)
    # Infer location based on haplogroup
    inferred_location, sourceHaplo = infer_location_from_haplogroup(haplogroup)[0],infer_location_from_haplogroup(haplogroup)[1]
    return {
        "source":sourceHaplo,
        "locations_found_in_context": locations,
        "haplogroup": haplogroup,
        "inferred_location": inferred_location

    }
# 4.3 Get from available NCBI
def infer_location_fromNCBI(accession):
    try:
        handle = Entrez.efetch(db="nuccore", id=accession, rettype="medline", retmode="text")
        text = handle.read()
        handle.close()
        match = re.search(r'/(geo_loc_name|country|location)\s*=\s*"([^"]+)"', text)
        if match:
            return match.group(2), match.group(0)  # This is the value like "Brunei"
        return "Not found", "Not found"

    except Exception as e:
        print("❌ Entrez error:", e)
        return "Not found", "Not found"

### ANCIENT/MODERN FLAG
from Bio import Entrez
import re

def flag_ancient_modern(accession, textsToExtract, isolate=None):
    """

    Try to classify a sample as Ancient or Modern using:

    1. NCBI accession (if available)

    2. Supplementary text or context fallback

    """
    context = ""
    label, explain = "", ""

    try:
        # Check if we can fetch metadata from NCBI using the accession
        handle = Entrez.efetch(db="nuccore", id=accession, rettype="medline", retmode="text")
        text = handle.read()
        handle.close()

        isolate_source = re.search(r'/(isolation_source)\s*=\s*"([^"]+)"', text)
        if isolate_source:
            context += isolate_source.group(0) + " "

        specimen = re.search(r'/(specimen|specimen_voucher)\s*=\s*"([^"]+)"', text)
        if specimen:
            context += specimen.group(0) + " "

        if context.strip():
            label, explain = detect_ancient_flag(context)
            if label!="Unknown":
              return label, explain + " from NCBI\n(" + context + ")"

        # If no useful NCBI metadata, check supplementary texts
        if textsToExtract:
            labels = {"modern": [0, ""], "ancient": [0, ""], "unknown": 0}

            for source in textsToExtract:
                text_block = textsToExtract[source]
                context = extract_relevant_paragraphs(text_block, accession, isolate=isolate)  # Reduce to informative paragraph(s)
                label, explain = detect_ancient_flag(context)

                if label == "Ancient":
                    labels["ancient"][0] += 1
                    labels["ancient"][1] += f"{source}:\n{explain}\n\n"
                elif label == "Modern":
                    labels["modern"][0] += 1
                    labels["modern"][1] += f"{source}:\n{explain}\n\n"
                else:
                    labels["unknown"] += 1

            if max(labels["modern"][0],labels["ancient"][0]) > 0:
                if labels["modern"][0] > labels["ancient"][0]:
                    return "Modern", labels["modern"][1]
                else:
                    return "Ancient", labels["ancient"][1]
            else:
              return "Unknown", "No strong keywords detected"
        else:
            print("No DOI or PubMed ID available for inference.")
            return "", ""

    except Exception as e:
        print("Error:", e)
        return "", ""


def detect_ancient_flag(context_snippet):
    context = context_snippet.lower()

    ancient_keywords = [
        "ancient", "archaeological", "prehistoric", "neolithic", "mesolithic", "paleolithic",
        "bronze age", "iron age", "burial", "tomb", "skeleton", "14c", "radiocarbon", "carbon dating",
        "postmortem damage", "udg treatment", "adna", "degradation", "site", "excavation",
        "archaeological context", "temporal transect", "population replacement", "cal bp", "calbp", "carbon dated"
    ]

    modern_keywords = [
        "modern", "hospital", "clinical", "consent","blood","buccal","unrelated", "blood sample","buccal sample","informed consent", "donor", "healthy", "patient",
        "genotyping", "screening", "medical", "cohort", "sequencing facility", "ethics approval",
        "we analysed", "we analyzed", "dataset includes", "new sequences", "published data",
        "control cohort", "sink population", "genbank accession", "sequenced", "pipeline", 
        "bioinformatic analysis", "samples from", "population genetics", "genome-wide data"
    ]

    ancient_hits = [k for k in ancient_keywords if k in context]
    modern_hits = [k for k in modern_keywords if k in context]

    if ancient_hits and not modern_hits:
        return "Ancient", f"Flagged as ancient due to keywords: {', '.join(ancient_hits)}"
    elif modern_hits and not ancient_hits:
        return "Modern", f"Flagged as modern due to keywords: {', '.join(modern_hits)}"
    elif ancient_hits and modern_hits:
        if len(ancient_hits) >= len(modern_hits):
            return "Ancient", f"Mixed context, leaning ancient due to: {', '.join(ancient_hits)}"
        else:
            return "Modern", f"Mixed context, leaning modern due to: {', '.join(modern_hits)}"
    
    # Fallback to QA
    answer = infer_fromQAModel(context, question="Are the mtDNA samples ancient or modern? Explain why.")
    if answer.startswith("Error"):
        return "Unknown", answer
    if "ancient" in answer.lower():
        return "Ancient", f"Leaning ancient based on QA: {answer}"
    elif "modern" in answer.lower():
        return "Modern", f"Leaning modern based on QA: {answer}"
    else:
        return "Unknown", f"No strong keywords or QA clues. QA said: {answer}"

# STEP 5: Main pipeline: accession -> 1. get pubmed id and isolate -> 2. get doi -> 3. get text -> 4. prediction -> 5. output: inferred location + explanation + confidence score
def classify_sample_location(accession):
  outputs = {}
  keyword, context, location, qa_result, haplo_result = "", "", "", "", ""
  # Step 1: get pubmed id and isolate
  pubmedID, isolate = get_info_from_accession(accession)
  '''if not pubmedID:

    return {"error": f"Could not retrieve PubMed ID for accession {accession}"}'''
  if not isolate:
    isolate = "UNKNOWN_ISOLATE"
  # Step 2: get doi
  doi = get_doi_from_pubmed_id(pubmedID)
  '''if not doi:

    return {"error": "DOI not found for this accession. Cannot fetch paper or context."}'''
  # Step 3: get text
  '''textsToExtract = { "doiLink":"paperText"

                        "file1.pdf":"text1",

                        "file2.doc":"text2",

                        "file3.xlsx":excelText3'''
  if doi and pubmedID:                      
    textsToExtract = get_paper_text(doi,pubmedID)
  else: textsToExtract = {}  
  '''if not textsToExtract:

    return {"error": f"No texts extracted for DOI {doi}"}'''
  if isolate not in [None, "UNKNOWN_ISOLATE"]:
    label, explain = flag_ancient_modern(accession,textsToExtract,isolate)
  else: 
    label, explain = flag_ancient_modern(accession,textsToExtract)  
  # Step 4: prediction
  outputs[accession] = {}
  outputs[isolate] = {}
  # 4.0 Infer from NCBI
  location, outputNCBI = infer_location_fromNCBI(accession)
  NCBI_result = {
      "source": "NCBI",
      "sample_id": accession,
      "predicted_location": location,
      "context_snippet": outputNCBI}
  outputs[accession]["NCBI"]= {"NCBI": NCBI_result}
  if textsToExtract:
    long_text = ""
    for key in textsToExtract:
      text = textsToExtract[key]
      # try accession number first
      outputs[accession][key] = {}
      keyword = accession
      context = extract_context(text, keyword, window=500)
      # 4.1: Using a HuggingFace model (question-answering)
      location = infer_fromQAModel(context, question=f"Where is the mtDNA sample {keyword} from?")
      qa_result = {
          "source": key,
          "sample_id": keyword,
          "predicted_location": location,
          "context_snippet": context
      }
      outputs[keyword][key]["QAModel"] = qa_result
      # 4.2: Infer from haplogroup
      haplo_result = classify_mtDNA_sample_from_haplo(context)
      outputs[keyword][key]["haplogroup"] = haplo_result
      # try isolate
      keyword = isolate
      outputs[isolate][key] = {}
      context = extract_context(text, keyword, window=500)
      # 4.1.1: Using a HuggingFace model (question-answering)
      location = infer_fromQAModel(context, question=f"Where is the mtDNA sample {keyword} from?")
      qa_result = {
          "source": key,
          "sample_id": keyword,
          "predicted_location": location,
          "context_snippet": context
      }
      outputs[keyword][key]["QAModel"] = qa_result
      # 4.2.1: Infer from haplogroup
      haplo_result = classify_mtDNA_sample_from_haplo(context)
      outputs[keyword][key]["haplogroup"] = haplo_result
      # add long text
      long_text += text + ". \n"
    # 4.3: UpgradeClassify
    # try sample_id as accession number
    sample_id = accession
    if sample_id:
      filtered_context = filter_context_for_sample(sample_id.upper(), long_text, window_size=1)
      locations = infer_location_for_sample(sample_id.upper(), filtered_context)
      if locations!="No clear location found in top matches":
        outputs[sample_id]["upgradeClassifier"] = {}
        outputs[sample_id]["upgradeClassifier"]["upgradeClassifier"] = {
          "source": "From these sources combined: "+ ", ".join(list(textsToExtract.keys())),
          "sample_id": sample_id,
          "predicted_location": ", ".join(locations),
          "context_snippep": "First 1000 words: \n"+ filtered_context[:1000]
        }
    # try sample_id as isolate name
    sample_id = isolate
    if sample_id:
      filtered_context = filter_context_for_sample(sample_id.upper(), long_text, window_size=1)
      locations = infer_location_for_sample(sample_id.upper(), filtered_context)
      if locations!="No clear location found in top matches":
        outputs[sample_id]["upgradeClassifier"] = {}
        outputs[sample_id]["upgradeClassifier"]["upgradeClassifier"] = {
          "source": "From these sources combined: "+ ", ".join(list(textsToExtract.keys())),
          "sample_id": sample_id,
          "predicted_location": ", ".join(locations),
          "context_snippep": "First 1000 words: \n"+ filtered_context[:1000]
        }
  return outputs, label, explain