Spaces:
Running
Running
File size: 21,358 Bytes
7fc87fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# mtDNA Location Classifier MVP (Google Colab)
# Accepts accession number → Fetches PubMed ID + isolate name → Gets abstract → Predicts location
import os
import subprocess
import re
from Bio import Entrez
import fitz
import spacy
from spacy.cli import download
from NER.PDF import pdf
from NER.WordDoc import wordDoc
from NER.html import extractHTML
from NER.word2Vec import word2vec
from transformers import pipeline
import urllib.parse, requests
from pathlib import Path
from upgradeClassify import filter_context_for_sample, infer_location_for_sample
# Set your email (required by NCBI Entrez)
#Entrez.email = "your-email@example.com"
import nltk
nltk.download("stopwords")
nltk.download("punkt")
nltk.download('punkt_tab')
# Step 1: Get PubMed ID from Accession using EDirect
'''def get_info_from_accession(accession):
cmd = f'{os.environ["HOME"]}/edirect/esummary -db nuccore -id {accession} -format medline | egrep "PUBMED|isolate"'
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
output = result.stdout
pubmedID, isolate = "", ""
for line in output.split("\n"):
if len(line) > 0:
if "PUBMED" in line:
pubmedID = line.split()[-1]
if "isolate" in line: # Check for isolate information
# Try direct GenBank annotation: /isolate="XXX"
match1 = re.search(r'/isolate\s*=\s*"([^"]+)"', line) # search on current line
if match1:
isolate = match1.group(1)
else:
# Try from DEFINITION line: ...isolate XXX...
match2 = re.search(r'isolate\s+([A-Za-z0-9_-]+)', line) # search on current line
if match2:
isolate = match2.group(1)'''
from Bio import Entrez, Medline
import re
Entrez.email = "your_email@example.com"
def get_info_from_accession(accession):
try:
handle = Entrez.efetch(db="nuccore", id=accession, rettype="medline", retmode="text")
text = handle.read()
handle.close()
# Extract PUBMED ID from the Medline text
pubmed_match = re.search(r'PUBMED\s+(\d+)', text)
pubmed_id = pubmed_match.group(1) if pubmed_match else ""
# Extract isolate if available
isolate_match = re.search(r'/isolate="([^"]+)"', text)
if not isolate_match:
isolate_match = re.search(r'isolate\s+([A-Za-z0-9_-]+)', text)
isolate = isolate_match.group(1) if isolate_match else ""
if not pubmed_id:
print(f"⚠️ No PubMed ID found for accession {accession}")
return pubmed_id, isolate
except Exception as e:
print("❌ Entrez error:", e)
return "", ""
# Step 2: Get doi link to access the paper
'''def get_doi_from_pubmed_id(pubmed_id):
cmd = f'{os.environ["HOME"]}/edirect/esummary -db pubmed -id {pubmed_id} -format medline | grep -i "AID"'
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
output = result.stdout
doi_pattern = r'10\.\d{4,9}/[-._;()/:A-Z0-9]+(?=\s*\[doi\])'
match = re.search(doi_pattern, output, re.IGNORECASE)
if match:
return match.group(0)
else:
return None # or raise an Exception with a helpful message'''
def get_doi_from_pubmed_id(pubmed_id):
try:
handle = Entrez.efetch(db="pubmed", id=pubmed_id, rettype="medline", retmode="text")
records = list(Medline.parse(handle))
handle.close()
if not records:
return None
record = records[0]
if "AID" in record:
for aid in record["AID"]:
if "[doi]" in aid:
return aid.split(" ")[0] # extract the DOI
return None
except Exception as e:
print(f"❌ Failed to get DOI from PubMed ID {pubmed_id}: {e}")
return None
# Step 3: Extract Text: Get the paper (html text), sup. materials (pdf, doc, excel) and do text-preprocessing
# Step 3.1: Extract Text
# sub: download excel file
def download_excel_file(url, save_path="temp.xlsx"):
if "view.officeapps.live.com" in url:
parsed_url = urllib.parse.parse_qs(urllib.parse.urlparse(url).query)
real_url = urllib.parse.unquote(parsed_url["src"][0])
response = requests.get(real_url)
with open(save_path, "wb") as f:
f.write(response.content)
return save_path
elif url.startswith("http") and (url.endswith(".xls") or url.endswith(".xlsx")):
response = requests.get(url)
response.raise_for_status() # Raises error if download fails
with open(save_path, "wb") as f:
f.write(response.content)
return save_path
else:
print("URL must point directly to an .xls or .xlsx file\n or it already downloaded.")
return url
def get_paper_text(doi,id,manualLinks=None):
# create the temporary folder to contain the texts
folder_path = Path("data/"+str(id))
if not folder_path.exists():
cmd = f'mkdir data/{id}'
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print("data/"+str(id) +" created.")
else:
print("data/"+str(id) +" already exists.")
saveLinkFolder = "data/"+id
link = 'https://doi.org/' + doi
'''textsToExtract = { "doiLink":"paperText"
"file1.pdf":"text1",
"file2.doc":"text2",
"file3.xlsx":excelText3'''
textsToExtract = {}
# get the file to create listOfFile for each id
html = extractHTML.HTML("",link)
jsonSM = html.getSupMaterial()
text = ""
links = [link] + sum((jsonSM[key] for key in jsonSM),[])
if manualLinks != None:
links += manualLinks
for l in links:
# get the main paper
name = l.split("/")[-1]
file_path = folder_path / name
if l == link:
text = html.getListSection()
textsToExtract[link] = text
elif l.endswith(".pdf"):
if file_path.is_file():
l = saveLinkFolder + "/" + name
print("File exists.")
p = pdf.PDF(l,saveLinkFolder,doi)
f = p.openPDFFile()
pdf_path = saveLinkFolder + "/" + l.split("/")[-1]
doc = fitz.open(pdf_path)
text = "\n".join([page.get_text() for page in doc])
textsToExtract[l] = text
elif l.endswith(".doc") or l.endswith(".docx"):
d = wordDoc.wordDoc(l,saveLinkFolder)
text = d.extractTextByPage()
textsToExtract[l] = text
elif l.split(".")[-1].lower() in "xlsx":
wc = word2vec.word2Vec()
# download excel file if it not downloaded yet
savePath = saveLinkFolder +"/"+ l.split("/")[-1]
excelPath = download_excel_file(l, savePath)
corpus = wc.tableTransformToCorpusText([],excelPath)
text = ''
for c in corpus:
para = corpus[c]
for words in para:
text += " ".join(words)
textsToExtract[l] = text
# delete folder after finishing getting text
#cmd = f'rm -r data/{id}'
#result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
return textsToExtract
# Step 3.2: Extract context
def extract_context(text, keyword, window=500):
# firstly try accession number
idx = text.find(keyword)
if idx == -1:
return "Sample ID not found."
return text[max(0, idx-window): idx+window]
def extract_relevant_paragraphs(text, accession, keep_if=None, isolate=None):
if keep_if is None:
keep_if = ["sample", "method", "mtdna", "sequence", "collected", "dataset", "supplementary", "table"]
outputs = ""
text = text.lower()
# If isolate is provided, prioritize paragraphs that mention it
# If isolate is provided, prioritize paragraphs that mention it
if accession and accession.lower() in text:
if extract_context(text, accession.lower(), window=700) != "Sample ID not found.":
outputs += extract_context(text, accession.lower(), window=700)
if isolate and isolate.lower() in text:
if extract_context(text, isolate.lower(), window=700) != "Sample ID not found.":
outputs += extract_context(text, isolate.lower(), window=700)
for keyword in keep_if:
para = extract_context(text, keyword)
if para and para not in outputs:
outputs += para + "\n"
return outputs
# Step 4: Classification for now (demo purposes)
# 4.1: Using a HuggingFace model (question-answering)
def infer_fromQAModel(context, question="Where is the mtDNA sample from?"):
try:
qa = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
result = qa({"context": context, "question": question})
return result.get("answer", "Unknown")
except Exception as e:
return f"Error: {str(e)}"
# 4.2: Infer from haplogroup
# Load pre-trained spaCy model for NER
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Define the haplogroup-to-region mapping (simple rule-based)
import csv
def load_haplogroup_mapping(csv_path):
mapping = {}
with open(csv_path) as f:
reader = csv.DictReader(f)
for row in reader:
mapping[row["haplogroup"]] = [row["region"],row["source"]]
return mapping
# Function to extract haplogroup from the text
def extract_haplogroup(text):
match = re.search(r'\bhaplogroup\s+([A-Z][0-9a-z]*)\b', text)
if match:
submatch = re.match(r'^[A-Z][0-9]*', match.group(1))
if submatch:
return submatch.group(0)
else:
return match.group(1) # fallback
fallback = re.search(r'\b([A-Z][0-9a-z]{1,5})\b', text)
if fallback:
return fallback.group(1)
return None
# Function to extract location based on NER
def extract_location(text):
doc = nlp(text)
locations = []
for ent in doc.ents:
if ent.label_ == "GPE": # GPE = Geopolitical Entity (location)
locations.append(ent.text)
return locations
# Function to infer location from haplogroup
def infer_location_from_haplogroup(haplogroup):
haplo_map = load_haplogroup_mapping("data/haplogroup_regions_extended.csv")
return haplo_map.get(haplogroup, ["Unknown","Unknown"])
# Function to classify the mtDNA sample
def classify_mtDNA_sample_from_haplo(text):
# Extract haplogroup
haplogroup = extract_haplogroup(text)
# Extract location based on NER
locations = extract_location(text)
# Infer location based on haplogroup
inferred_location, sourceHaplo = infer_location_from_haplogroup(haplogroup)[0],infer_location_from_haplogroup(haplogroup)[1]
return {
"source":sourceHaplo,
"locations_found_in_context": locations,
"haplogroup": haplogroup,
"inferred_location": inferred_location
}
# 4.3 Get from available NCBI
def infer_location_fromNCBI(accession):
try:
handle = Entrez.efetch(db="nuccore", id=accession, rettype="medline", retmode="text")
text = handle.read()
handle.close()
match = re.search(r'/(geo_loc_name|country|location)\s*=\s*"([^"]+)"', text)
if match:
return match.group(2), match.group(0) # This is the value like "Brunei"
return "Not found", "Not found"
except Exception as e:
print("❌ Entrez error:", e)
return "Not found", "Not found"
### ANCIENT/MODERN FLAG
from Bio import Entrez
import re
def flag_ancient_modern(accession, textsToExtract, isolate=None):
"""
Try to classify a sample as Ancient or Modern using:
1. NCBI accession (if available)
2. Supplementary text or context fallback
"""
context = ""
label, explain = "", ""
try:
# Check if we can fetch metadata from NCBI using the accession
handle = Entrez.efetch(db="nuccore", id=accession, rettype="medline", retmode="text")
text = handle.read()
handle.close()
isolate_source = re.search(r'/(isolation_source)\s*=\s*"([^"]+)"', text)
if isolate_source:
context += isolate_source.group(0) + " "
specimen = re.search(r'/(specimen|specimen_voucher)\s*=\s*"([^"]+)"', text)
if specimen:
context += specimen.group(0) + " "
if context.strip():
label, explain = detect_ancient_flag(context)
if label!="Unknown":
return label, explain + " from NCBI\n(" + context + ")"
# If no useful NCBI metadata, check supplementary texts
if textsToExtract:
labels = {"modern": [0, ""], "ancient": [0, ""], "unknown": 0}
for source in textsToExtract:
text_block = textsToExtract[source]
context = extract_relevant_paragraphs(text_block, accession, isolate=isolate) # Reduce to informative paragraph(s)
label, explain = detect_ancient_flag(context)
if label == "Ancient":
labels["ancient"][0] += 1
labels["ancient"][1] += f"{source}:\n{explain}\n\n"
elif label == "Modern":
labels["modern"][0] += 1
labels["modern"][1] += f"{source}:\n{explain}\n\n"
else:
labels["unknown"] += 1
if max(labels["modern"][0],labels["ancient"][0]) > 0:
if labels["modern"][0] > labels["ancient"][0]:
return "Modern", labels["modern"][1]
else:
return "Ancient", labels["ancient"][1]
else:
return "Unknown", "No strong keywords detected"
else:
print("No DOI or PubMed ID available for inference.")
return "", ""
except Exception as e:
print("Error:", e)
return "", ""
def detect_ancient_flag(context_snippet):
context = context_snippet.lower()
ancient_keywords = [
"ancient", "archaeological", "prehistoric", "neolithic", "mesolithic", "paleolithic",
"bronze age", "iron age", "burial", "tomb", "skeleton", "14c", "radiocarbon", "carbon dating",
"postmortem damage", "udg treatment", "adna", "degradation", "site", "excavation",
"archaeological context", "temporal transect", "population replacement", "cal bp", "calbp", "carbon dated"
]
modern_keywords = [
"modern", "hospital", "clinical", "consent","blood","buccal","unrelated", "blood sample","buccal sample","informed consent", "donor", "healthy", "patient",
"genotyping", "screening", "medical", "cohort", "sequencing facility", "ethics approval",
"we analysed", "we analyzed", "dataset includes", "new sequences", "published data",
"control cohort", "sink population", "genbank accession", "sequenced", "pipeline",
"bioinformatic analysis", "samples from", "population genetics", "genome-wide data"
]
ancient_hits = [k for k in ancient_keywords if k in context]
modern_hits = [k for k in modern_keywords if k in context]
if ancient_hits and not modern_hits:
return "Ancient", f"Flagged as ancient due to keywords: {', '.join(ancient_hits)}"
elif modern_hits and not ancient_hits:
return "Modern", f"Flagged as modern due to keywords: {', '.join(modern_hits)}"
elif ancient_hits and modern_hits:
if len(ancient_hits) >= len(modern_hits):
return "Ancient", f"Mixed context, leaning ancient due to: {', '.join(ancient_hits)}"
else:
return "Modern", f"Mixed context, leaning modern due to: {', '.join(modern_hits)}"
# Fallback to QA
answer = infer_fromQAModel(context, question="Are the mtDNA samples ancient or modern? Explain why.")
if answer.startswith("Error"):
return "Unknown", answer
if "ancient" in answer.lower():
return "Ancient", f"Leaning ancient based on QA: {answer}"
elif "modern" in answer.lower():
return "Modern", f"Leaning modern based on QA: {answer}"
else:
return "Unknown", f"No strong keywords or QA clues. QA said: {answer}"
# STEP 5: Main pipeline: accession -> 1. get pubmed id and isolate -> 2. get doi -> 3. get text -> 4. prediction -> 5. output: inferred location + explanation + confidence score
def classify_sample_location(accession):
outputs = {}
keyword, context, location, qa_result, haplo_result = "", "", "", "", ""
# Step 1: get pubmed id and isolate
pubmedID, isolate = get_info_from_accession(accession)
'''if not pubmedID:
return {"error": f"Could not retrieve PubMed ID for accession {accession}"}'''
if not isolate:
isolate = "UNKNOWN_ISOLATE"
# Step 2: get doi
doi = get_doi_from_pubmed_id(pubmedID)
'''if not doi:
return {"error": "DOI not found for this accession. Cannot fetch paper or context."}'''
# Step 3: get text
'''textsToExtract = { "doiLink":"paperText"
"file1.pdf":"text1",
"file2.doc":"text2",
"file3.xlsx":excelText3'''
if doi and pubmedID:
textsToExtract = get_paper_text(doi,pubmedID)
else: textsToExtract = {}
'''if not textsToExtract:
return {"error": f"No texts extracted for DOI {doi}"}'''
if isolate not in [None, "UNKNOWN_ISOLATE"]:
label, explain = flag_ancient_modern(accession,textsToExtract,isolate)
else:
label, explain = flag_ancient_modern(accession,textsToExtract)
# Step 4: prediction
outputs[accession] = {}
outputs[isolate] = {}
# 4.0 Infer from NCBI
location, outputNCBI = infer_location_fromNCBI(accession)
NCBI_result = {
"source": "NCBI",
"sample_id": accession,
"predicted_location": location,
"context_snippet": outputNCBI}
outputs[accession]["NCBI"]= {"NCBI": NCBI_result}
if textsToExtract:
long_text = ""
for key in textsToExtract:
text = textsToExtract[key]
# try accession number first
outputs[accession][key] = {}
keyword = accession
context = extract_context(text, keyword, window=500)
# 4.1: Using a HuggingFace model (question-answering)
location = infer_fromQAModel(context, question=f"Where is the mtDNA sample {keyword} from?")
qa_result = {
"source": key,
"sample_id": keyword,
"predicted_location": location,
"context_snippet": context
}
outputs[keyword][key]["QAModel"] = qa_result
# 4.2: Infer from haplogroup
haplo_result = classify_mtDNA_sample_from_haplo(context)
outputs[keyword][key]["haplogroup"] = haplo_result
# try isolate
keyword = isolate
outputs[isolate][key] = {}
context = extract_context(text, keyword, window=500)
# 4.1.1: Using a HuggingFace model (question-answering)
location = infer_fromQAModel(context, question=f"Where is the mtDNA sample {keyword} from?")
qa_result = {
"source": key,
"sample_id": keyword,
"predicted_location": location,
"context_snippet": context
}
outputs[keyword][key]["QAModel"] = qa_result
# 4.2.1: Infer from haplogroup
haplo_result = classify_mtDNA_sample_from_haplo(context)
outputs[keyword][key]["haplogroup"] = haplo_result
# add long text
long_text += text + ". \n"
# 4.3: UpgradeClassify
# try sample_id as accession number
sample_id = accession
if sample_id:
filtered_context = filter_context_for_sample(sample_id.upper(), long_text, window_size=1)
locations = infer_location_for_sample(sample_id.upper(), filtered_context)
if locations!="No clear location found in top matches":
outputs[sample_id]["upgradeClassifier"] = {}
outputs[sample_id]["upgradeClassifier"]["upgradeClassifier"] = {
"source": "From these sources combined: "+ ", ".join(list(textsToExtract.keys())),
"sample_id": sample_id,
"predicted_location": ", ".join(locations),
"context_snippep": "First 1000 words: \n"+ filtered_context[:1000]
}
# try sample_id as isolate name
sample_id = isolate
if sample_id:
filtered_context = filter_context_for_sample(sample_id.upper(), long_text, window_size=1)
locations = infer_location_for_sample(sample_id.upper(), filtered_context)
if locations!="No clear location found in top matches":
outputs[sample_id]["upgradeClassifier"] = {}
outputs[sample_id]["upgradeClassifier"]["upgradeClassifier"] = {
"source": "From these sources combined: "+ ", ".join(list(textsToExtract.keys())),
"sample_id": sample_id,
"predicted_location": ", ".join(locations),
"context_snippep": "First 1000 words: \n"+ filtered_context[:1000]
}
return outputs, label, explain
|