Spaces:
Sleeping
Sleeping
to 4b
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
FairFate Embeddings API - Qwen3-Embedding-
|
| 3 |
Multilingual semantic embeddings for tabletop RPG product classification
|
| 4 |
"""
|
| 5 |
|
|
@@ -10,12 +10,15 @@ from typing import List, Union
|
|
| 10 |
import spaces # ZeroGPU decorator
|
| 11 |
|
| 12 |
# Load model once at startup
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
print(f"π Loading model: {MODEL_NAME}")
|
| 15 |
model = SentenceTransformer(MODEL_NAME, trust_remote_code=True)
|
| 16 |
print(f"β
Model loaded successfully")
|
| 17 |
-
print(f" Dimensions: {model.get_sentence_embedding_dimension()}")
|
| 18 |
print(f" Max Seq Length: {model.max_seq_length}")
|
|
|
|
| 19 |
|
| 20 |
# Optional: Add instruction prefix for RPG domain (improves accuracy by 1-5%)
|
| 21 |
INSTRUCTION_PREFIX = "Represent this tabletop RPG product for semantic search: "
|
|
@@ -24,22 +27,24 @@ INSTRUCTION_PREFIX = "Represent this tabletop RPG product for semantic search: "
|
|
| 24 |
def generate_embeddings(
|
| 25 |
texts: Union[str, List[str]],
|
| 26 |
use_instruction: bool = True,
|
| 27 |
-
output_dimensions: int =
|
| 28 |
) -> List[List[float]]:
|
| 29 |
"""
|
| 30 |
-
Generate embeddings for text(s)
|
|
|
|
| 31 |
Args:
|
| 32 |
texts: Single string or list of strings
|
| 33 |
use_instruction: Whether to prepend instruction prefix (recommended)
|
| 34 |
-
output_dimensions: Output embedding size (32-
|
|
|
|
| 35 |
Returns:
|
| 36 |
-
List of embedding vectors
|
| 37 |
"""
|
| 38 |
# Handle single string
|
| 39 |
if isinstance(texts, str):
|
| 40 |
texts = [texts]
|
| 41 |
|
| 42 |
-
# Add instruction prefix if enabled (Qwen3
|
| 43 |
if use_instruction:
|
| 44 |
texts = [INSTRUCTION_PREFIX + text for text in texts]
|
| 45 |
|
|
@@ -52,10 +57,15 @@ def generate_embeddings(
|
|
| 52 |
batch_size=32
|
| 53 |
)
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
embeddings = embeddings[:, :output_dimensions]
|
| 60 |
|
| 61 |
# Convert to list for JSON serialization
|
|
@@ -215,12 +225,16 @@ def calculate_similarity(text1: str, text2: str, use_instruction: bool) -> str:
|
|
| 215 |
with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft()) as demo:
|
| 216 |
gr.Markdown("""
|
| 217 |
# π² FairFate Embeddings API
|
| 218 |
-
|
|
|
|
|
|
|
| 219 |
- π **100+ Languages** (English, Spanish, French, German, Chinese, Japanese, etc.)
|
| 220 |
-
- π **
|
| 221 |
- π **32K Context** (massive text support)
|
| 222 |
- β‘ **Instruction-Aware** (optimized for RPG content)
|
| 223 |
-
-
|
|
|
|
|
|
|
| 224 |
Perfect for: Product classification, semantic search, recommendations, multilingual matching
|
| 225 |
""")
|
| 226 |
|
|
@@ -239,8 +253,8 @@ with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft())
|
|
| 239 |
)
|
| 240 |
use_inst = gr.Checkbox(label="Use instruction prefix (recommended for RPG content)", value=True)
|
| 241 |
output_dims = gr.Slider(
|
| 242 |
-
minimum=32, maximum=
|
| 243 |
-
label="Output Dimensions"
|
| 244 |
)
|
| 245 |
submit_btn = gr.Button("Generate Embeddings", variant="primary")
|
| 246 |
|
|
@@ -251,8 +265,8 @@ with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft())
|
|
| 251 |
|
| 252 |
gr.Examples(
|
| 253 |
examples=[
|
| 254 |
-
["D&D 5E epic fantasy adventure with dragons and dungeons", True,
|
| 255 |
-
["Cyberpunk shadowrun detective noir campaign\nPathfinder 2E beginner box starter set\nCall of Cthulhu horror investigation", True,
|
| 256 |
],
|
| 257 |
inputs=[input_text, use_inst, output_dims],
|
| 258 |
)
|
|
@@ -260,12 +274,14 @@ with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft())
|
|
| 260 |
with gr.Tab("π Similarity Calculator"):
|
| 261 |
gr.Markdown("""
|
| 262 |
**Comprehensive Similarity Analysis** - Compare two texts using multiple metrics:
|
|
|
|
| 263 |
- **Cosine Similarity**: Angle between vectors (best for semantic meaning)
|
| 264 |
- **Jaccard Similarity**: Intersection over union (set-like comparison)
|
| 265 |
- **SΓΈrensen-Dice**: Weighted intersection (emphasizes shared features)
|
| 266 |
- **Euclidean Distance/Similarity**: Straight-line distance in vector space
|
| 267 |
- **Manhattan Distance**: Grid-based distance (L1 norm)
|
| 268 |
- **Pearson Correlation**: Linear relationship between vectors
|
|
|
|
| 269 |
Perfect for duplicate detection, classification testing, and understanding product relationships!
|
| 270 |
""")
|
| 271 |
|
|
@@ -301,31 +317,41 @@ with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft())
|
|
| 301 |
with gr.Tab("π API Documentation"):
|
| 302 |
gr.Markdown("""
|
| 303 |
## π Quick Start
|
|
|
|
| 304 |
### Python
|
|
|
|
| 305 |
```python
|
| 306 |
import requests
|
| 307 |
import numpy as np
|
|
|
|
| 308 |
url = "https://YOUR_USERNAME-fairfate-embeddings.hf.space/api/predict"
|
|
|
|
| 309 |
# Generate embeddings
|
| 310 |
texts = [
|
| 311 |
"Storm King's Thunder - Epic D&D 5E adventure",
|
| 312 |
"Curse of Strahd - Gothic horror campaign"
|
| 313 |
]
|
|
|
|
| 314 |
response = requests.post(
|
| 315 |
url,
|
| 316 |
json={
|
| 317 |
-
"data": [texts, True,
|
| 318 |
"fn_index": 0 # Index of generate_embeddings function
|
| 319 |
}
|
| 320 |
)
|
|
|
|
| 321 |
result = response.json()
|
| 322 |
embeddings = result["data"][0]
|
|
|
|
| 323 |
print(f"Generated {len(embeddings)} embeddings")
|
| 324 |
-
print(f"Dimensions: {len(embeddings[0])}")
|
| 325 |
```
|
|
|
|
| 326 |
### TypeScript/JavaScript
|
|
|
|
| 327 |
```typescript
|
| 328 |
const url = 'https://YOUR_USERNAME-fairfate-embeddings.hf.space/api/predict';
|
|
|
|
| 329 |
const response = await fetch(url, {
|
| 330 |
method: 'POST',
|
| 331 |
headers: { 'Content-Type': 'application/json' },
|
|
@@ -333,50 +359,63 @@ with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft())
|
|
| 333 |
data: [
|
| 334 |
["Your text here", "Another text"],
|
| 335 |
true, // use_instruction
|
| 336 |
-
|
| 337 |
],
|
| 338 |
fn_index: 0
|
| 339 |
})
|
| 340 |
});
|
|
|
|
| 341 |
const result = await response.json();
|
| 342 |
-
const embeddings = result.data[0];
|
| 343 |
```
|
|
|
|
| 344 |
### cURL
|
|
|
|
| 345 |
```bash
|
| 346 |
curl -X POST \\
|
| 347 |
https://YOUR_USERNAME-fairfate-embeddings.hf.space/api/predict \\
|
| 348 |
-H "Content-Type: application/json" \\
|
| 349 |
-d '{
|
| 350 |
-
"data": [["Your text here"], true,
|
| 351 |
"fn_index": 0
|
| 352 |
}'
|
| 353 |
```
|
|
|
|
| 354 |
## π Parameters
|
|
|
|
| 355 |
| Parameter | Type | Default | Description |
|
| 356 |
|-----------|------|---------|-------------|
|
| 357 |
| `texts` | string[] | required | Array of texts to embed |
|
| 358 |
| `use_instruction` | boolean | true | Add instruction prefix (improves accuracy) |
|
| 359 |
-
| `output_dimensions` | number |
|
|
|
|
| 360 |
## π― Use Cases
|
|
|
|
| 361 |
- **Product Classification**: Auto-tag by genre, system, theme
|
| 362 |
- **Semantic Search**: Find by meaning, not keywords
|
| 363 |
- **Recommendations**: "Similar products"
|
| 364 |
- **Duplicate Detection**: Find similar listings
|
| 365 |
- **Multilingual Matching**: Cross-language similarity
|
|
|
|
| 366 |
## β‘ Performance
|
|
|
|
| 367 |
| Batch Size | GPU Throughput | CPU Throughput |
|
| 368 |
|------------|----------------|----------------|
|
| 369 |
| 1 | ~800/sec | ~80/sec |
|
| 370 |
| 32 | ~4000/sec | ~250/sec |
|
|
|
|
| 371 |
## π Supported Languages
|
|
|
|
| 372 |
English, Spanish, French, German, Italian, Portuguese, Russian, Polish, Dutch, Czech,
|
| 373 |
Chinese, Japanese, Korean, Arabic, Hebrew, Hindi, Thai, Vietnamese, Indonesian,
|
| 374 |
Turkish, Swedish, Norwegian, Danish, Finnish, Greek, Romanian, Hungarian, and 80+ more!
|
|
|
|
| 375 |
## π Citation
|
|
|
|
| 376 |
```bibtex
|
| 377 |
-
@misc{
|
| 378 |
-
title={Qwen3 Embedding},
|
| 379 |
-
author={Alibaba Cloud},
|
| 380 |
year={2025},
|
| 381 |
url={https://github.com/QwenLM/Qwen3-Embedding}
|
| 382 |
}
|
|
@@ -386,26 +425,31 @@ with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft())
|
|
| 386 |
with gr.Tab("βΉοΈ Model Info"):
|
| 387 |
gr.Markdown(f"""
|
| 388 |
## Model Details
|
|
|
|
| 389 |
- **Model:** {MODEL_NAME}
|
| 390 |
- **Dimensions:** {model.get_sentence_embedding_dimension()}
|
| 391 |
- **Max Sequence Length:** {model.max_seq_length} tokens
|
| 392 |
- **Languages:** 100+
|
| 393 |
- **License:** Apache 2.0
|
| 394 |
- **Normalization:** L2 normalized (ready for cosine similarity)
|
|
|
|
| 395 |
## Advantages
|
| 396 |
-
|
|
|
|
| 397 |
β
**Massive Context** - 32K tokens (vs 512 for most models)
|
| 398 |
β
**Instruction-Aware** - Can customize for specific domains
|
| 399 |
-
β
**Flexible Dimensions** - 32 to
|
| 400 |
β
**Code-Switching** - Handles mixed-language text
|
|
|
|
|
|
|
| 401 |
## Resources
|
| 402 |
-
|
| 403 |
-
- [
|
| 404 |
-
- [
|
|
|
|
| 405 |
- [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
|
| 406 |
""")
|
| 407 |
|
| 408 |
# Launch with API enabled
|
| 409 |
if __name__ == "__main__":
|
| 410 |
demo.launch()
|
| 411 |
-
|
|
|
|
| 1 |
"""
|
| 2 |
+
FairFate Embeddings API - Qwen3-Embedding-4B
|
| 3 |
Multilingual semantic embeddings for tabletop RPG product classification
|
| 4 |
"""
|
| 5 |
|
|
|
|
| 10 |
import spaces # ZeroGPU decorator
|
| 11 |
|
| 12 |
# Load model once at startup
|
| 13 |
+
# Using Qwen3-Embedding-4B for 2560 native dimensions (truncate to 1536 for production)
|
| 14 |
+
# Qwen3-4B is optimal for 1536 dims: 60% retention (vs 42.9% for GTE-Qwen2-7B)
|
| 15 |
+
MODEL_NAME = "Qwen/Qwen3-Embedding-4B"
|
| 16 |
print(f"π Loading model: {MODEL_NAME}")
|
| 17 |
model = SentenceTransformer(MODEL_NAME, trust_remote_code=True)
|
| 18 |
print(f"β
Model loaded successfully")
|
| 19 |
+
print(f" Native Dimensions: {model.get_sentence_embedding_dimension()}")
|
| 20 |
print(f" Max Seq Length: {model.max_seq_length}")
|
| 21 |
+
print(f" Matryoshka Support: Yes (truncate to any dimension β€ {model.get_sentence_embedding_dimension()})")
|
| 22 |
|
| 23 |
# Optional: Add instruction prefix for RPG domain (improves accuracy by 1-5%)
|
| 24 |
INSTRUCTION_PREFIX = "Represent this tabletop RPG product for semantic search: "
|
|
|
|
| 27 |
def generate_embeddings(
|
| 28 |
texts: Union[str, List[str]],
|
| 29 |
use_instruction: bool = True,
|
| 30 |
+
output_dimensions: int = 1536
|
| 31 |
) -> List[List[float]]:
|
| 32 |
"""
|
| 33 |
+
Generate embeddings for text(s) with matryoshka truncation
|
| 34 |
+
|
| 35 |
Args:
|
| 36 |
texts: Single string or list of strings
|
| 37 |
use_instruction: Whether to prepend instruction prefix (recommended)
|
| 38 |
+
output_dimensions: Output embedding size (32-3584, default 1536 for production)
|
| 39 |
+
|
| 40 |
Returns:
|
| 41 |
+
List of embedding vectors (L2 normalized)
|
| 42 |
"""
|
| 43 |
# Handle single string
|
| 44 |
if isinstance(texts, str):
|
| 45 |
texts = [texts]
|
| 46 |
|
| 47 |
+
# Add instruction prefix if enabled (Qwen3-Embedding models are instruction-aware)
|
| 48 |
if use_instruction:
|
| 49 |
texts = [INSTRUCTION_PREFIX + text for text in texts]
|
| 50 |
|
|
|
|
| 57 |
batch_size=32
|
| 58 |
)
|
| 59 |
|
| 60 |
+
# Get native dimensions
|
| 61 |
+
native_dims = model.get_sentence_embedding_dimension()
|
| 62 |
+
|
| 63 |
+
# Matryoshka truncation: Simply take first N dimensions
|
| 64 |
+
# Qwen3-Embedding models support truncation to any dimension β€ native_dims
|
| 65 |
+
if output_dimensions != native_dims:
|
| 66 |
+
if output_dimensions > native_dims:
|
| 67 |
+
print(f"β οΈ Warning: Requested {output_dimensions} dims but model has {native_dims}. Using {native_dims}.")
|
| 68 |
+
output_dimensions = native_dims
|
| 69 |
embeddings = embeddings[:, :output_dimensions]
|
| 70 |
|
| 71 |
# Convert to list for JSON serialization
|
|
|
|
| 225 |
with gr.Blocks(title="FairFate Embeddings API - Qwen3", theme=gr.themes.Soft()) as demo:
|
| 226 |
gr.Markdown("""
|
| 227 |
# π² FairFate Embeddings API
|
| 228 |
+
|
| 229 |
+
**Powered by Qwen3-Embedding-4B** - Advanced Multilingual Embedding Model
|
| 230 |
+
|
| 231 |
- π **100+ Languages** (English, Spanish, French, German, Chinese, Japanese, etc.)
|
| 232 |
+
- π **2560 Native Dimensions** (matryoshka truncation to 1536 for production)
|
| 233 |
- π **32K Context** (massive text support)
|
| 234 |
- β‘ **Instruction-Aware** (optimized for RPG content)
|
| 235 |
+
- π¬ **Matryoshka Support** (flexible 32-2560 dimensions)
|
| 236 |
+
- π **Optimal for 1536 dims** (60% dimension retention)
|
| 237 |
+
|
| 238 |
Perfect for: Product classification, semantic search, recommendations, multilingual matching
|
| 239 |
""")
|
| 240 |
|
|
|
|
| 253 |
)
|
| 254 |
use_inst = gr.Checkbox(label="Use instruction prefix (recommended for RPG content)", value=True)
|
| 255 |
output_dims = gr.Slider(
|
| 256 |
+
minimum=32, maximum=2560, value=1536, step=32,
|
| 257 |
+
label="Output Dimensions (Production: 1536)"
|
| 258 |
)
|
| 259 |
submit_btn = gr.Button("Generate Embeddings", variant="primary")
|
| 260 |
|
|
|
|
| 265 |
|
| 266 |
gr.Examples(
|
| 267 |
examples=[
|
| 268 |
+
["D&D 5E epic fantasy adventure with dragons and dungeons", True, 1536],
|
| 269 |
+
["Cyberpunk shadowrun detective noir campaign\nPathfinder 2E beginner box starter set\nCall of Cthulhu horror investigation", True, 1536],
|
| 270 |
],
|
| 271 |
inputs=[input_text, use_inst, output_dims],
|
| 272 |
)
|
|
|
|
| 274 |
with gr.Tab("π Similarity Calculator"):
|
| 275 |
gr.Markdown("""
|
| 276 |
**Comprehensive Similarity Analysis** - Compare two texts using multiple metrics:
|
| 277 |
+
|
| 278 |
- **Cosine Similarity**: Angle between vectors (best for semantic meaning)
|
| 279 |
- **Jaccard Similarity**: Intersection over union (set-like comparison)
|
| 280 |
- **SΓΈrensen-Dice**: Weighted intersection (emphasizes shared features)
|
| 281 |
- **Euclidean Distance/Similarity**: Straight-line distance in vector space
|
| 282 |
- **Manhattan Distance**: Grid-based distance (L1 norm)
|
| 283 |
- **Pearson Correlation**: Linear relationship between vectors
|
| 284 |
+
|
| 285 |
Perfect for duplicate detection, classification testing, and understanding product relationships!
|
| 286 |
""")
|
| 287 |
|
|
|
|
| 317 |
with gr.Tab("π API Documentation"):
|
| 318 |
gr.Markdown("""
|
| 319 |
## π Quick Start
|
| 320 |
+
|
| 321 |
### Python
|
| 322 |
+
|
| 323 |
```python
|
| 324 |
import requests
|
| 325 |
import numpy as np
|
| 326 |
+
|
| 327 |
url = "https://YOUR_USERNAME-fairfate-embeddings.hf.space/api/predict"
|
| 328 |
+
|
| 329 |
# Generate embeddings
|
| 330 |
texts = [
|
| 331 |
"Storm King's Thunder - Epic D&D 5E adventure",
|
| 332 |
"Curse of Strahd - Gothic horror campaign"
|
| 333 |
]
|
| 334 |
+
|
| 335 |
response = requests.post(
|
| 336 |
url,
|
| 337 |
json={
|
| 338 |
+
"data": [texts, True, 1536], # [texts, use_instruction, dimensions]
|
| 339 |
"fn_index": 0 # Index of generate_embeddings function
|
| 340 |
}
|
| 341 |
)
|
| 342 |
+
|
| 343 |
result = response.json()
|
| 344 |
embeddings = result["data"][0]
|
| 345 |
+
|
| 346 |
print(f"Generated {len(embeddings)} embeddings")
|
| 347 |
+
print(f"Dimensions: {len(embeddings[0])}") # Should output 1536
|
| 348 |
```
|
| 349 |
+
|
| 350 |
### TypeScript/JavaScript
|
| 351 |
+
|
| 352 |
```typescript
|
| 353 |
const url = 'https://YOUR_USERNAME-fairfate-embeddings.hf.space/api/predict';
|
| 354 |
+
|
| 355 |
const response = await fetch(url, {
|
| 356 |
method: 'POST',
|
| 357 |
headers: { 'Content-Type': 'application/json' },
|
|
|
|
| 359 |
data: [
|
| 360 |
["Your text here", "Another text"],
|
| 361 |
true, // use_instruction
|
| 362 |
+
1536 // output_dimensions (production default)
|
| 363 |
],
|
| 364 |
fn_index: 0
|
| 365 |
})
|
| 366 |
});
|
| 367 |
+
|
| 368 |
const result = await response.json();
|
| 369 |
+
const embeddings = result.data[0]; // Array of 1536-dim vectors
|
| 370 |
```
|
| 371 |
+
|
| 372 |
### cURL
|
| 373 |
+
|
| 374 |
```bash
|
| 375 |
curl -X POST \\
|
| 376 |
https://YOUR_USERNAME-fairfate-embeddings.hf.space/api/predict \\
|
| 377 |
-H "Content-Type: application/json" \\
|
| 378 |
-d '{
|
| 379 |
+
"data": [["Your text here"], true, 1536],
|
| 380 |
"fn_index": 0
|
| 381 |
}'
|
| 382 |
```
|
| 383 |
+
|
| 384 |
## π Parameters
|
| 385 |
+
|
| 386 |
| Parameter | Type | Default | Description |
|
| 387 |
|-----------|------|---------|-------------|
|
| 388 |
| `texts` | string[] | required | Array of texts to embed |
|
| 389 |
| `use_instruction` | boolean | true | Add instruction prefix (improves accuracy) |
|
| 390 |
+
| `output_dimensions` | number | 1536 | Output size (32-3584, production default: 1536) |
|
| 391 |
+
|
| 392 |
## π― Use Cases
|
| 393 |
+
|
| 394 |
- **Product Classification**: Auto-tag by genre, system, theme
|
| 395 |
- **Semantic Search**: Find by meaning, not keywords
|
| 396 |
- **Recommendations**: "Similar products"
|
| 397 |
- **Duplicate Detection**: Find similar listings
|
| 398 |
- **Multilingual Matching**: Cross-language similarity
|
| 399 |
+
|
| 400 |
## β‘ Performance
|
| 401 |
+
|
| 402 |
| Batch Size | GPU Throughput | CPU Throughput |
|
| 403 |
|------------|----------------|----------------|
|
| 404 |
| 1 | ~800/sec | ~80/sec |
|
| 405 |
| 32 | ~4000/sec | ~250/sec |
|
| 406 |
+
|
| 407 |
## π Supported Languages
|
| 408 |
+
|
| 409 |
English, Spanish, French, German, Italian, Portuguese, Russian, Polish, Dutch, Czech,
|
| 410 |
Chinese, Japanese, Korean, Arabic, Hebrew, Hindi, Thai, Vietnamese, Indonesian,
|
| 411 |
Turkish, Swedish, Norwegian, Danish, Finnish, Greek, Romanian, Hungarian, and 80+ more!
|
| 412 |
+
|
| 413 |
## π Citation
|
| 414 |
+
|
| 415 |
```bibtex
|
| 416 |
+
@misc{qwen3-embedding-2025,
|
| 417 |
+
title={Qwen3-Embedding: Multilingual Text Embedding Models},
|
| 418 |
+
author={Qwen Team, Alibaba Cloud},
|
| 419 |
year={2025},
|
| 420 |
url={https://github.com/QwenLM/Qwen3-Embedding}
|
| 421 |
}
|
|
|
|
| 425 |
with gr.Tab("βΉοΈ Model Info"):
|
| 426 |
gr.Markdown(f"""
|
| 427 |
## Model Details
|
| 428 |
+
|
| 429 |
- **Model:** {MODEL_NAME}
|
| 430 |
- **Dimensions:** {model.get_sentence_embedding_dimension()}
|
| 431 |
- **Max Sequence Length:** {model.max_seq_length} tokens
|
| 432 |
- **Languages:** 100+
|
| 433 |
- **License:** Apache 2.0
|
| 434 |
- **Normalization:** L2 normalized (ready for cosine similarity)
|
| 435 |
+
|
| 436 |
## Advantages
|
| 437 |
+
|
| 438 |
+
β
**Best Multilingual Performance** - Top tier on MTEB leaderboard
|
| 439 |
β
**Massive Context** - 32K tokens (vs 512 for most models)
|
| 440 |
β
**Instruction-Aware** - Can customize for specific domains
|
| 441 |
+
β
**Flexible Dimensions** - 32 to 2560 dimensions (matryoshka truncation)
|
| 442 |
β
**Code-Switching** - Handles mixed-language text
|
| 443 |
+
β
**Production Optimized** - 60% retention at 1536 dims (best in class)
|
| 444 |
+
|
| 445 |
## Resources
|
| 446 |
+
|
| 447 |
+
- [Model Card](https://huggingface.co/Qwen/Qwen3-Embedding-4B)
|
| 448 |
+
- [Qwen3-Embedding GitHub](https://github.com/QwenLM/Qwen3-Embedding)
|
| 449 |
+
- [Qwen Blog](https://qwenlm.github.io/)
|
| 450 |
- [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
|
| 451 |
""")
|
| 452 |
|
| 453 |
# Launch with API enabled
|
| 454 |
if __name__ == "__main__":
|
| 455 |
demo.launch()
|
|
|