Spaces:
Sleeping
Sleeping
minor changes
Browse files- app.py +54 -24
- src/main.py +28 -25
- src/transcribe_image.py +8 -2
app.py
CHANGED
|
@@ -1,43 +1,73 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
|
| 3 |
-
from src.main import process_image # Assume process_image is a function in main.py
|
| 4 |
-
from src.assess_text import assess_essay_with_gpt
|
| 5 |
-
from src.transcribe_image import transcribe_image
|
| 6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
st.title("AutoAssess: Student Essay Transcription and Assessment")
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
# Upload folder of images
|
| 11 |
-
uploaded_files = st.file_uploader("Upload a folder of student essays (images)", type=['jpg', 'jpeg', 'png'], accept_multiple_files=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Text inputs for question and criteria
|
| 14 |
-
essay_question = st.text_input("Enter the essay question:")
|
| 15 |
-
grading_criteria = st.text_area("Enter grading criteria or relevant marking information:")
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Upload Excel file with student IDs and page count
|
| 18 |
-
student_info_file = st.file_uploader("Upload Excel file with student IDs and page count", type=["xlsx"])
|
|
|
|
| 19 |
|
| 20 |
if st.button("Process Essays"):
|
| 21 |
-
if not uploaded_files or not essay_question or not grading_criteria or not
|
| 22 |
st.warning("Please upload all required files and enter necessary information.")
|
| 23 |
else:
|
| 24 |
# Process student info file
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
st.write(student_df)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
for uploaded_file in uploaded_files:
|
| 31 |
-
image = Image.open(uploaded_file)
|
| 32 |
-
# Use your backend function to process each image
|
| 33 |
-
transcription = process_image(image, essay_question, grading_criteria)
|
| 34 |
-
results.append({"filename": uploaded_file.name, "transcription": transcription})
|
| 35 |
|
| 36 |
-
for result in results:
|
| 37 |
-
st.write(f"**File:** {result['filename']}")
|
| 38 |
-
st.write(result['transcription'])
|
| 39 |
|
| 40 |
# Optional: Save results to the output folder
|
| 41 |
-
output_file = "output/results.
|
| 42 |
-
|
| 43 |
-
st.success(f"All essays processed. Results saved to {output_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from src.main import process_essays
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
+
import os
|
| 5 |
+
from openpyxl import load_workbook, Workbook
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import openai
|
| 8 |
+
|
| 9 |
+
def save_workbook_to_bytes(wb):
|
| 10 |
+
# Save the workbook into a BytesIO object (in memory, not on disk)
|
| 11 |
+
byte_io = BytesIO()
|
| 12 |
+
wb.save(byte_io)
|
| 13 |
+
byte_io.seek(0) # Go to the beginning of the BytesIO buffer
|
| 14 |
+
return byte_io.getvalue()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 18 |
+
|
| 19 |
+
# Set the OpenAI API key
|
| 20 |
+
openai.api_key = openai_api_key
|
| 21 |
|
| 22 |
st.title("AutoAssess: Student Essay Transcription and Assessment")
|
| 23 |
|
| 24 |
+
st.title("AutoAssess")
|
| 25 |
+
st.write("If you see this, the basic app is loading correctly!")
|
| 26 |
+
|
| 27 |
# Upload folder of images
|
| 28 |
+
# uploaded_files = sorted(st.file_uploader("Upload a folder of student essays (images)", type=['jpg', 'jpeg', 'png'], accept_multiple_files=True))
|
| 29 |
+
|
| 30 |
+
# replace uploaded files with files loading from directory
|
| 31 |
+
image_dir = "data/images"
|
| 32 |
+
uploaded_files = []
|
| 33 |
+
for file in os.listdir(image_dir):
|
| 34 |
+
with open(image_dir + '/' + file, "rb") as image_file:
|
| 35 |
+
uploaded_files.append(image_file.read())
|
| 36 |
|
| 37 |
# Text inputs for question and criteria
|
| 38 |
+
# essay_question = st.text_input("Enter the essay question:")
|
| 39 |
+
# grading_criteria = st.text_area("Enter grading criteria or relevant marking information:")
|
| 40 |
+
|
| 41 |
+
essay_question = "What is beauty?"
|
| 42 |
+
grading_criteria = "1. Introduction\n2. Body\n3. Conclusion\n4. Grammar\n5. Spelling\n6. Punctuation\n7. Originality\n8. Creativity"
|
| 43 |
|
| 44 |
# Upload Excel file with student IDs and page count
|
| 45 |
+
# student_info_file = st.file_uploader("Upload Excel file with student IDs and page count", type=["xlsx"])
|
| 46 |
+
excel_file = "data/essays.xlsx"
|
| 47 |
|
| 48 |
if st.button("Process Essays"):
|
| 49 |
+
if not uploaded_files or not essay_question or not grading_criteria or not excel_file:
|
| 50 |
st.warning("Please upload all required files and enter necessary information.")
|
| 51 |
else:
|
| 52 |
# Process student info file
|
| 53 |
+
workbook = load_workbook(excel_file)
|
| 54 |
+
|
|
|
|
| 55 |
|
| 56 |
+
new_workbook = process_essays(uploaded_files,essay_question,grading_criteria,workbook)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# Optional: Save results to the output folder
|
| 60 |
+
output_file = "output/results.xlsx"
|
| 61 |
+
new_workbook.save(output_file)
|
| 62 |
+
st.success(f"All essays processed. Results saved to {output_file}")
|
| 63 |
+
|
| 64 |
+
# Convert the workbook to bytes
|
| 65 |
+
excel_file = save_workbook_to_bytes(new_workbook)
|
| 66 |
+
|
| 67 |
+
# Display the download button
|
| 68 |
+
st.download_button(
|
| 69 |
+
label="Download the Excel file",
|
| 70 |
+
data=excel_file,
|
| 71 |
+
file_name="results.xlsx",
|
| 72 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
| 73 |
+
)
|
src/main.py
CHANGED
|
@@ -5,19 +5,8 @@ from openpyxl import load_workbook, Workbook
|
|
| 5 |
from src.transcribe_image import transcribe_image
|
| 6 |
from src.assess_text import assess_essay_with_gpt
|
| 7 |
|
| 8 |
-
# OpenAI API key setup
|
| 9 |
-
openai.api_key = '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'
|
| 10 |
|
| 11 |
-
def process_essays(
|
| 12 |
-
# Load question and guidelines
|
| 13 |
-
with open(question_file, 'r') as file:
|
| 14 |
-
question = file.read().strip()
|
| 15 |
-
|
| 16 |
-
with open(guidelines_file, 'r') as file:
|
| 17 |
-
guidelines = file.read().strip()
|
| 18 |
-
|
| 19 |
-
# Load the Excel sheet
|
| 20 |
-
workbook = load_workbook(excel_file)
|
| 21 |
sheet = workbook.active
|
| 22 |
|
| 23 |
# Create a new workbook to save results
|
|
@@ -28,8 +17,6 @@ def process_essays(folder_path, question_file, guidelines_file, excel_file):
|
|
| 28 |
for col in range(1, sheet.max_column + 1):
|
| 29 |
new_sheet.cell(row=1, column=col).value = sheet.cell(row=1, column=col).value
|
| 30 |
|
| 31 |
-
# Sort images in folder
|
| 32 |
-
images = sorted([os.path.join(folder_path, img) for img in os.listdir(folder_path)], key=os.path.getmtime)
|
| 33 |
img_index = 0
|
| 34 |
|
| 35 |
# First Pass: Transcribe missing texts
|
|
@@ -55,8 +42,8 @@ def process_essays(folder_path, question_file, guidelines_file, excel_file):
|
|
| 55 |
new_sheet.cell(row=row, column=3).value = transcribed_text
|
| 56 |
|
| 57 |
# Save current state with transcriptions
|
| 58 |
-
new_workbook.save("data/transcribed_essays.xlsx")
|
| 59 |
-
print("All transcriptions completed. Saved as 'transcribed_essays.xlsx'.")
|
| 60 |
|
| 61 |
# Collect graded examples and initialize list
|
| 62 |
examples = []
|
|
@@ -91,15 +78,31 @@ def process_essays(folder_path, question_file, guidelines_file, excel_file):
|
|
| 91 |
new_sheet.cell(row=row, column=5).value = reason
|
| 92 |
|
| 93 |
# Save the new Excel file with assessments filled in
|
| 94 |
-
new_workbook
|
| 95 |
-
print("Assessment complete. Results saved in assessed version of the Excel file.")
|
| 96 |
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
guidelines_file
|
| 104 |
-
|
| 105 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from src.transcribe_image import transcribe_image
|
| 6 |
from src.assess_text import assess_essay_with_gpt
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
def process_essays(images, question, guidelines, workbook):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
sheet = workbook.active
|
| 11 |
|
| 12 |
# Create a new workbook to save results
|
|
|
|
| 17 |
for col in range(1, sheet.max_column + 1):
|
| 18 |
new_sheet.cell(row=1, column=col).value = sheet.cell(row=1, column=col).value
|
| 19 |
|
|
|
|
|
|
|
| 20 |
img_index = 0
|
| 21 |
|
| 22 |
# First Pass: Transcribe missing texts
|
|
|
|
| 42 |
new_sheet.cell(row=row, column=3).value = transcribed_text
|
| 43 |
|
| 44 |
# Save current state with transcriptions
|
| 45 |
+
# new_workbook.save("data/transcribed_essays.xlsx")
|
| 46 |
+
# print("All transcriptions completed. Saved as 'transcribed_essays.xlsx'.")
|
| 47 |
|
| 48 |
# Collect graded examples and initialize list
|
| 49 |
examples = []
|
|
|
|
| 78 |
new_sheet.cell(row=row, column=5).value = reason
|
| 79 |
|
| 80 |
# Save the new Excel file with assessments filled in
|
| 81 |
+
return new_workbook
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
|
| 86 |
+
folder_path = "data/images" # Replace with actual folder path
|
| 87 |
+
question_file = "data/question.txt" # Replace with actual file path
|
| 88 |
+
guidelines_file = "data/assessment_guidelines.txt" # Replace with actual file path
|
| 89 |
+
excel_file = "data/essays.xlsx"
|
| 90 |
|
| 91 |
+
# Load
|
| 92 |
+
images = sorted([os.path.join(folder_path, img) for img in os.listdir(folder_path)], key=os.path.getmtime)
|
| 93 |
+
with open(question_file, 'r') as file:
|
| 94 |
+
question = file.read().strip()
|
| 95 |
+
with open(guidelines_file, 'r') as file:
|
| 96 |
+
guidelines = file.read().strip()
|
| 97 |
+
workbook = load_workbook(excel_file)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
new_workbook = process_essays(
|
| 101 |
+
images,
|
| 102 |
+
question,
|
| 103 |
+
guidelines,
|
| 104 |
+
workbook
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
new_workbook.save(excel_file.replace(".xlsx", "_assessed.xlsx"))
|
| 108 |
+
print("Assessment complete. Results saved in assessed version of the Excel file.")
|
src/transcribe_image.py
CHANGED
|
@@ -7,14 +7,20 @@ def encode_image(image_path):
|
|
| 7 |
assert os.path.exists(image_path), "The image file does not exist."
|
| 8 |
with open(image_path, "rb") as image_file:
|
| 9 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
def transcribe_image(
|
| 12 |
"""Transcribe handwritten text from an image using OCR."""
|
| 13 |
# Initialize the OpenAI client
|
| 14 |
client = OpenAI()
|
| 15 |
|
| 16 |
# Encoding the image
|
| 17 |
-
base64_image =
|
| 18 |
|
| 19 |
|
| 20 |
# Preparing the API call
|
|
|
|
| 7 |
assert os.path.exists(image_path), "The image file does not exist."
|
| 8 |
with open(image_path, "rb") as image_file:
|
| 9 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 10 |
+
|
| 11 |
+
def encode_image_from_uploaded_file(image):
|
| 12 |
+
# Convert image to bytes
|
| 13 |
+
assert image is not None, "No image uploaded."
|
| 14 |
+
image_bytes = image.read()
|
| 15 |
+
return base64.b64encode(image_bytes).decode('utf-8')
|
| 16 |
|
| 17 |
+
def transcribe_image(image_file):
|
| 18 |
"""Transcribe handwritten text from an image using OCR."""
|
| 19 |
# Initialize the OpenAI client
|
| 20 |
client = OpenAI()
|
| 21 |
|
| 22 |
# Encoding the image
|
| 23 |
+
base64_image = encode_image_from_uploaded_file(image_file)
|
| 24 |
|
| 25 |
|
| 26 |
# Preparing the API call
|