Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
-
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText
|
| 4 |
import torch
|
| 5 |
import spaces
|
|
|
|
| 6 |
|
| 7 |
model_path = "nanonets/Nanonets-OCR-s"
|
| 8 |
|
|
@@ -33,6 +34,65 @@ def process_tags(content: str) -> str:
|
|
| 33 |
|
| 34 |
return content
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
@spaces.GPU()
|
| 37 |
def ocr_image_gradio(image, max_tokens=4096):
|
| 38 |
"""Process image through Nanonets OCR model for Gradio interface"""
|
|
@@ -88,6 +148,9 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
| 88 |
π» GitHub Repository
|
| 89 |
</a>
|
| 90 |
</div>
|
|
|
|
|
|
|
|
|
|
| 91 |
</div>
|
| 92 |
""")
|
| 93 |
|
|
@@ -108,9 +171,16 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
| 108 |
)
|
| 109 |
extract_btn = gr.Button("Extract Text", variant="primary", size="lg")
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
with gr.Column(scale=2):
|
| 112 |
output_text = gr.Markdown(
|
| 113 |
-
label="
|
| 114 |
latex_delimiters=[
|
| 115 |
{"left": "$$", "right": "$$", "display": True},
|
| 116 |
{"left": "$", "right": "$", "display": False},
|
|
@@ -124,16 +194,16 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
| 124 |
show_copy_button=True,
|
| 125 |
)
|
| 126 |
|
| 127 |
-
# Event handlers
|
| 128 |
extract_btn.click(
|
| 129 |
-
fn=
|
| 130 |
inputs=[image_input, max_tokens_slider],
|
| 131 |
outputs=output_text,
|
| 132 |
show_progress=True
|
| 133 |
)
|
| 134 |
|
| 135 |
image_input.change(
|
| 136 |
-
fn=
|
| 137 |
inputs=[image_input, max_tokens_slider],
|
| 138 |
outputs=output_text,
|
| 139 |
show_progress=True
|
|
@@ -142,32 +212,42 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
| 142 |
# Add model information section
|
| 143 |
with gr.Accordion("About Nanonets-OCR-s", open=False):
|
| 144 |
gr.Markdown("""
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
+
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
+
import threading
|
| 7 |
|
| 8 |
model_path = "nanonets/Nanonets-OCR-s"
|
| 9 |
|
|
|
|
| 34 |
|
| 35 |
return content
|
| 36 |
|
| 37 |
+
@spaces.GPU()
|
| 38 |
+
def ocr_image_gradio_stream(image, max_tokens=4096):
|
| 39 |
+
"""Process image through Nanonets OCR model with streaming output"""
|
| 40 |
+
if image is None:
|
| 41 |
+
yield "Please upload an image."
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using β and β for check boxes."""
|
| 46 |
+
|
| 47 |
+
# Convert PIL image if needed
|
| 48 |
+
if not isinstance(image, Image.Image):
|
| 49 |
+
image = Image.fromarray(image)
|
| 50 |
+
|
| 51 |
+
messages = [
|
| 52 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 53 |
+
{"role": "user", "content": [
|
| 54 |
+
{"type": "image", "image": image},
|
| 55 |
+
{"type": "text", "text": prompt},
|
| 56 |
+
]},
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 60 |
+
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
|
| 61 |
+
inputs = inputs.to(model.device)
|
| 62 |
+
|
| 63 |
+
# Set up streaming
|
| 64 |
+
streamer = TextIteratorStreamer(
|
| 65 |
+
tokenizer=tokenizer,
|
| 66 |
+
skip_prompt=True,
|
| 67 |
+
skip_special_tokens=True,
|
| 68 |
+
clean_up_tokenization_spaces=True
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
generation_kwargs = {
|
| 72 |
+
**inputs,
|
| 73 |
+
"max_new_tokens": max_tokens,
|
| 74 |
+
"do_sample": False,
|
| 75 |
+
"streamer": streamer,
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
# Start generation in a separate thread
|
| 79 |
+
generation_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 80 |
+
generation_thread.start()
|
| 81 |
+
|
| 82 |
+
# Stream the output
|
| 83 |
+
partial_output = ""
|
| 84 |
+
for new_token in streamer:
|
| 85 |
+
partial_output += new_token
|
| 86 |
+
processed_output = process_tags(partial_output)
|
| 87 |
+
yield processed_output
|
| 88 |
+
|
| 89 |
+
# Ensure thread completes
|
| 90 |
+
generation_thread.join()
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
yield f"Error processing image: {str(e)}"
|
| 94 |
+
|
| 95 |
+
# Non-streaming version as fallback
|
| 96 |
@spaces.GPU()
|
| 97 |
def ocr_image_gradio(image, max_tokens=4096):
|
| 98 |
"""Process image through Nanonets OCR model for Gradio interface"""
|
|
|
|
| 148 |
π» GitHub Repository
|
| 149 |
</a>
|
| 150 |
</div>
|
| 151 |
+
<p style="font-size: 0.9em; color: #10b981; font-weight: 500;">
|
| 152 |
+
β¨ Now with streaming output and support for 4 concurrent uploads!
|
| 153 |
+
</p>
|
| 154 |
</div>
|
| 155 |
""")
|
| 156 |
|
|
|
|
| 171 |
)
|
| 172 |
extract_btn = gr.Button("Extract Text", variant="primary", size="lg")
|
| 173 |
|
| 174 |
+
gr.Markdown("""
|
| 175 |
+
**π‘ Tips:**
|
| 176 |
+
- Upload supports concurrent processing of up to 4 images
|
| 177 |
+
- Results stream in real-time as they're generated
|
| 178 |
+
- Automatic processing starts when you upload an image
|
| 179 |
+
""")
|
| 180 |
+
|
| 181 |
with gr.Column(scale=2):
|
| 182 |
output_text = gr.Markdown(
|
| 183 |
+
label="Streaming model prediction",
|
| 184 |
latex_delimiters=[
|
| 185 |
{"left": "$$", "right": "$$", "display": True},
|
| 186 |
{"left": "$", "right": "$", "display": False},
|
|
|
|
| 194 |
show_copy_button=True,
|
| 195 |
)
|
| 196 |
|
| 197 |
+
# Event handlers with streaming
|
| 198 |
extract_btn.click(
|
| 199 |
+
fn=ocr_image_gradio_stream,
|
| 200 |
inputs=[image_input, max_tokens_slider],
|
| 201 |
outputs=output_text,
|
| 202 |
show_progress=True
|
| 203 |
)
|
| 204 |
|
| 205 |
image_input.change(
|
| 206 |
+
fn=ocr_image_gradio_stream,
|
| 207 |
inputs=[image_input, max_tokens_slider],
|
| 208 |
outputs=output_text,
|
| 209 |
show_progress=True
|
|
|
|
| 212 |
# Add model information section
|
| 213 |
with gr.Accordion("About Nanonets-OCR-s", open=False):
|
| 214 |
gr.Markdown("""
|
| 215 |
+
## Nanonets-OCR-s
|
| 216 |
+
|
| 217 |
+
Nanonets-OCR-s is a powerful, state-of-the-art image-to-markdown OCR model that goes far beyond traditional text extraction.
|
| 218 |
+
It transforms documents into structured markdown with intelligent content recognition and semantic tagging, making it ideal
|
| 219 |
+
for downstream processing by Large Language Models (LLMs).
|
| 220 |
+
|
| 221 |
+
### Key Features
|
| 222 |
+
|
| 223 |
+
- **LaTeX Equation Recognition**: Automatically converts mathematical equations and formulas into properly formatted LaTeX syntax.
|
| 224 |
+
It distinguishes between inline `($...$)` and display `($$...$$)` equations.
|
| 225 |
+
|
| 226 |
+
- **Intelligent Image Description**: Describes images within documents using structured `<img>` tags, making them digestible
|
| 227 |
+
for LLM processing. It can describe various image types, including logos, charts, graphs and so on, detailing their content,
|
| 228 |
+
style, and context.
|
| 229 |
+
|
| 230 |
+
- **Signature Detection & Isolation**: Identifies and isolates signatures from other text, outputting them within a `<signature>` tag.
|
| 231 |
+
This is crucial for processing legal and business documents.
|
| 232 |
+
|
| 233 |
+
- **Watermark Extraction**: Detects and extracts watermark text from documents, placing it within a `<watermark>` tag.
|
| 234 |
+
|
| 235 |
+
- **Smart Checkbox Handling**: Converts form checkboxes and radio buttons into standardized Unicode symbols (β, β, β)
|
| 236 |
+
for consistent and reliable processing.
|
| 237 |
+
|
| 238 |
+
- **Complex Table Extraction**: Accurately extracts complex tables from documents and converts them into both markdown
|
| 239 |
+
and HTML table formats.
|
| 240 |
+
""")
|
| 241 |
|
| 242 |
if __name__ == "__main__":
|
| 243 |
+
# Configure for concurrent processing with streaming support
|
| 244 |
+
demo.queue(
|
| 245 |
+
max_size=20, # Maximum queue size
|
| 246 |
+
concurrency_count=4, # Allow 4 concurrent requests
|
| 247 |
+
status_update_rate=0.1, # Update status every 100ms for better streaming experience
|
| 248 |
+
).launch(
|
| 249 |
+
server_name="0.0.0.0",
|
| 250 |
+
server_port=7860,
|
| 251 |
+
show_error=True,
|
| 252 |
+
share=False
|
| 253 |
+
)
|