Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms | |
| from transformers import AutoModelForImageSegmentation | |
| import io | |
| import os | |
| # Set matmul precision (important for performance on some systems) | |
| torch.set_float32_matmul_precision(["high", "highest"][0]) | |
| # Load the model (outside the function for efficiency) | |
| # Cache the model to avoid reloading on every run | |
| def load_model(): | |
| model = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True) | |
| model.to("cuda" if torch.cuda.is_available() else "cpu") # Use CUDA if available | |
| return model | |
| birefnet = load_model() | |
| # Image transformation | |
| transform_image = transforms.Compose([ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ]) | |
| # Cache the processed images. | |
| def process(image): | |
| image_size = image.size | |
| input_images = transform_image(image).unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu") | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(image_size) | |
| image.putalpha(mask) | |
| return image | |
| def process_file(uploaded_file): | |
| try: | |
| image = Image.open(uploaded_file).convert("RGB") | |
| transparent = process(image) | |
| # Convert to bytes for download | |
| img_bytes = io.BytesIO() | |
| transparent.save(img_bytes, format="PNG") | |
| img_bytes = img_bytes.getvalue() | |
| return img_bytes, transparent # Return bytes for download and PIL image for display | |
| except Exception as e: | |
| st.error(f"An error occurred: {e}") | |
| return None, None | |
| st.title("Background Removal Tool") | |
| # Tabs for different input methods | |
| tabs = ["Image Upload", "URL Input", "File Output"] | |
| selected_tab = st.sidebar.radio("Select Input Method", tabs) | |
| if selected_tab == "Image Upload": | |
| uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file).convert("RGB") | |
| processed_image = process(image) | |
| st.image(processed_image, caption="Processed Image") | |
| elif selected_tab == "URL Input": | |
| image_url = st.text_input("Paste an image URL") | |
| if image_url: | |
| try: | |
| import requests | |
| from io import BytesIO | |
| response = requests.get(image_url, stream=True) | |
| response.raise_for_status() # Raise an exception for bad status codes | |
| image = Image.open(BytesIO(response.content)).convert("RGB") | |
| processed_image = process(image) | |
| st.image(processed_image, caption="Processed Image from URL") | |
| except requests.exceptions.RequestException as e: | |
| st.error(f"Error fetching image from URL: {e}") | |
| except Exception as e: | |
| st.error(f"Error processing image: {e}") | |
| elif selected_tab == "File Output": | |
| uploaded_file = st.file_uploader("Upload an image for file output", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| file_bytes, processed_image = process_file(uploaded_file) | |
| if file_bytes: | |
| st.image(processed_image, caption="Processed Image") # Display the image | |
| st.download_button( | |
| label="Download PNG", | |
| data=file_bytes, | |
| file_name=f"{uploaded_file.name.rsplit('.', 1)[0]}.png", | |
| mime="image/png", | |
| ) |