Spaces:
Sleeping
Sleeping
Commit
·
30933bd
1
Parent(s):
9a8697c
Upload 2 files
Browse files- app.py +77 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel
|
| 4 |
+
from sentence_transformers import util
|
| 5 |
+
class SentenceSimiliarity():
|
| 6 |
+
|
| 7 |
+
def __init__(self, sentence1, sentence2):
|
| 8 |
+
self.sentence1 = sentence1
|
| 9 |
+
self.sentence2 = sentence2
|
| 10 |
+
self.model_name = "bert-base-uncased"
|
| 11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 12 |
+
self.model = AutoModel.from_pretrained(self.model_name)
|
| 13 |
+
|
| 14 |
+
def tokenize(self):
|
| 15 |
+
tokenized1 = self.tokenizer(
|
| 16 |
+
self.sentence1,
|
| 17 |
+
return_tensors='pt',
|
| 18 |
+
padding=True,
|
| 19 |
+
truncation=True
|
| 20 |
+
)
|
| 21 |
+
tokenized2 = self.tokenizer(
|
| 22 |
+
self.sentence2,
|
| 23 |
+
return_tensors='pt',
|
| 24 |
+
padding=True,
|
| 25 |
+
truncation=True
|
| 26 |
+
)
|
| 27 |
+
return tokenized1, tokenized2
|
| 28 |
+
|
| 29 |
+
def get_embeddings(self):
|
| 30 |
+
tokenized1, tokenized2 = self.tokenize()
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
embeddings1 = self.model(**tokenized1).last_hidden_state.mean(dim=1)
|
| 33 |
+
embeddings2 = self.model(**tokenized2).last_hidden_state.mean(dim=1)
|
| 34 |
+
return embeddings1, embeddings2
|
| 35 |
+
|
| 36 |
+
def get_similarity_scores(self):
|
| 37 |
+
embeddings1, embeddings2 = self.get_embeddings()
|
| 38 |
+
scores = util.cos_sim(embeddings1, embeddings2)
|
| 39 |
+
return scores
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def results(self):
|
| 43 |
+
scores = self.get_similarity_scores()
|
| 44 |
+
statement = f"The sentence has {scores.item() * 100:.2f}% similarity"
|
| 45 |
+
return statement
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class UI():
|
| 49 |
+
|
| 50 |
+
def __init__(self):
|
| 51 |
+
st.title("Sentence Similiarity Checker")
|
| 52 |
+
st.caption("You can use this for checking similarity between resume and job description")
|
| 53 |
+
|
| 54 |
+
def get(self):
|
| 55 |
+
self.sentence1 = st.text_area(
|
| 56 |
+
label="Sentence 1",
|
| 57 |
+
help="This is a parent text the next text will be compared with this text"
|
| 58 |
+
)
|
| 59 |
+
self.sentence2 = st.text_area(
|
| 60 |
+
label="Sentence 2",
|
| 61 |
+
help="This is a child text"
|
| 62 |
+
)
|
| 63 |
+
self.button = st.button(
|
| 64 |
+
label="Check",
|
| 65 |
+
help='Check Sentence Similarity'
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def result(self):
|
| 69 |
+
self.get()
|
| 70 |
+
ss = SentenceSimiliarity(self.sentence1, self.sentence2)
|
| 71 |
+
|
| 72 |
+
if self.button:
|
| 73 |
+
st.text(ss.results())
|
| 74 |
+
# print(ss.results())
|
| 75 |
+
|
| 76 |
+
ui = UI()
|
| 77 |
+
ui.result()
|
requirements.txt
ADDED
|
File without changes
|