Spaces:
Sleeping
Sleeping
yolov11
Browse files- app.py +158 -80
- requirements.txt +1 -5
app.py
CHANGED
|
@@ -1,87 +1,165 @@
|
|
| 1 |
-
import cv2
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
import tempfile
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
"""
|
| 12 |
-
|
| 13 |
-
y dibuja los recuadros y etiquetas en cada frame. Devuelve un .mp4 anotado.
|
| 14 |
"""
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
return
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 21 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 22 |
-
|
| 23 |
-
# Creamos un archivo temporal para guardar el resultado
|
| 24 |
-
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
| 25 |
-
output_path = tmp_file.name
|
| 26 |
-
tmp_file.close()
|
| 27 |
-
|
| 28 |
-
# Usamos un códec compatible con navegadores (H.264 / avc1)
|
| 29 |
-
fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
| 30 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 31 |
-
|
| 32 |
-
# Clases que nos interesan
|
| 33 |
-
valid_classes = ["person", "bicycle", "motorcycle"]
|
| 34 |
-
|
| 35 |
-
while True:
|
| 36 |
-
ret, frame = cap.read()
|
| 37 |
-
if not ret:
|
| 38 |
-
break
|
| 39 |
-
|
| 40 |
-
# Convertir BGR -> RGB para predecir con YOLO
|
| 41 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 3 |
from ultralytics import YOLO
|
| 4 |
+
import spaces
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
import tempfile
|
| 8 |
|
| 9 |
+
@spaces.GPU
|
| 10 |
+
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
|
| 11 |
+
if input_type == "Image":
|
| 12 |
+
if image is None:
|
| 13 |
+
width, height = 640, 480
|
| 14 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
| 15 |
+
draw = ImageDraw.Draw(blank_image)
|
| 16 |
+
message = "No image provided"
|
| 17 |
+
font = ImageFont.load_default(size=40)
|
| 18 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
| 19 |
+
text_width = bbox[2] - bbox[0]
|
| 20 |
+
text_height = bbox[3] - bbox[1]
|
| 21 |
+
text_x = (width - text_width) / 2
|
| 22 |
+
text_y = (height - text_height) / 2
|
| 23 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
| 24 |
+
return blank_image, None
|
| 25 |
+
|
| 26 |
+
model = YOLO(model_id)
|
| 27 |
+
results = model.predict(
|
| 28 |
+
source=image,
|
| 29 |
+
conf=conf_threshold,
|
| 30 |
+
iou=iou_threshold,
|
| 31 |
+
imgsz=640,
|
| 32 |
+
max_det=max_detection,
|
| 33 |
+
show_labels=True,
|
| 34 |
+
show_conf=True,
|
| 35 |
+
)
|
| 36 |
+
for r in results:
|
| 37 |
+
image_array = r.plot()
|
| 38 |
+
annotated_image = Image.fromarray(image_array[..., ::-1])
|
| 39 |
+
return annotated_image, None
|
| 40 |
+
|
| 41 |
+
elif input_type == "Video":
|
| 42 |
+
if video is None:
|
| 43 |
+
width, height = 640, 480
|
| 44 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
| 45 |
+
draw = ImageDraw.Draw(blank_image)
|
| 46 |
+
message = "No video provided"
|
| 47 |
+
font = ImageFont.load_default(size=40)
|
| 48 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
| 49 |
+
text_width = bbox[2] - bbox[0]
|
| 50 |
+
text_height = bbox[3] - bbox[1]
|
| 51 |
+
text_x = (width - text_width) / 2
|
| 52 |
+
text_y = (height - text_height) / 2
|
| 53 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
| 54 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 55 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 56 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
|
| 57 |
+
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
|
| 58 |
+
out.write(frame)
|
| 59 |
+
out.release()
|
| 60 |
+
return None, temp_video_file
|
| 61 |
+
|
| 62 |
+
model = YOLO(model_id)
|
| 63 |
+
cap = cv2.VideoCapture(video)
|
| 64 |
+
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
|
| 65 |
+
frames = []
|
| 66 |
+
while True:
|
| 67 |
+
ret, frame = cap.read()
|
| 68 |
+
if not ret:
|
| 69 |
+
break
|
| 70 |
+
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 71 |
+
results = model.predict(
|
| 72 |
+
source=pil_frame,
|
| 73 |
+
conf=conf_threshold,
|
| 74 |
+
iou=iou_threshold,
|
| 75 |
+
imgsz=640,
|
| 76 |
+
max_det=max_detection,
|
| 77 |
+
show_labels=True,
|
| 78 |
+
show_conf=True,
|
| 79 |
+
)
|
| 80 |
+
for r in results:
|
| 81 |
+
annotated_frame_array = r.plot()
|
| 82 |
+
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
|
| 83 |
+
frames.append(annotated_frame)
|
| 84 |
+
cap.release()
|
| 85 |
+
if len(frames) == 0:
|
| 86 |
+
return None, None
|
| 87 |
+
|
| 88 |
+
height_out, width_out, _ = frames[0].shape
|
| 89 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 90 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 91 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
|
| 92 |
+
for f in frames:
|
| 93 |
+
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
|
| 94 |
+
out.write(f_bgr)
|
| 95 |
+
out.release()
|
| 96 |
+
return None, temp_video_file
|
| 97 |
+
|
| 98 |
+
else:
|
| 99 |
+
return None, None
|
| 100 |
+
|
| 101 |
+
def update_visibility(input_type):
|
| 102 |
"""
|
| 103 |
+
Show/hide image/video input and output depending on input_type.
|
|
|
|
| 104 |
"""
|
| 105 |
+
if input_type == "Image":
|
| 106 |
+
# image, video, output_image, output_video
|
| 107 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 108 |
+
else:
|
| 109 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
|
| 112 |
+
"""
|
| 113 |
+
This is called by gr.Examples. We force the radio to 'Image'
|
| 114 |
+
and then do a standard image inference, returning both updated radio
|
| 115 |
+
value and the annotated image.
|
| 116 |
+
"""
|
| 117 |
+
annotated_image, _ = yolo_inference(
|
| 118 |
+
input_type="Image",
|
| 119 |
+
image=image,
|
| 120 |
+
video=None,
|
| 121 |
+
model_id=model_id,
|
| 122 |
+
conf_threshold=conf_threshold,
|
| 123 |
+
iou_threshold=iou_threshold,
|
| 124 |
+
max_detection=max_detection
|
| 125 |
+
)
|
| 126 |
+
return gr.update(value="Image"), annotated_image
|
| 127 |
+
|
| 128 |
+
with gr.Blocks() as app:
|
| 129 |
+
gr.Markdown("# Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification")
|
| 130 |
+
gr.Markdown("Upload image(s) or video(s) for inference using the latest Ultralytics YOLO11 models.")
|
| 131 |
+
|
| 132 |
+
with gr.Row():
|
| 133 |
+
with gr.Column():
|
| 134 |
+
image = gr.Image(type="pil", label="Image", visible=True)
|
| 135 |
+
video = gr.Video(label="Video", visible=False)
|
| 136 |
+
input_type = gr.Radio(
|
| 137 |
+
choices=["Image", "Video"],
|
| 138 |
+
value="Image",
|
| 139 |
+
label="Input Type",
|
| 140 |
+
)
|
| 141 |
+
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
| 142 |
+
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
|
| 143 |
+
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
|
| 144 |
+
infer_button = gr.Button("Detect Objects")
|
| 145 |
+
with gr.Column():
|
| 146 |
+
output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
|
| 147 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
| 148 |
+
|
| 149 |
+
# Toggle input/output visibility
|
| 150 |
+
input_type.change(
|
| 151 |
+
fn=update_visibility,
|
| 152 |
+
inputs=input_type,
|
| 153 |
+
outputs=[image, video, output_image, output_video],
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Main inference for button click
|
| 157 |
+
infer_button.click(
|
| 158 |
+
fn=yolo_inference,
|
| 159 |
+
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
|
| 160 |
+
outputs=[output_image, output_video],
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
if __name__ == '__main__':
|
| 165 |
+
app.launch()
|
requirements.txt
CHANGED
|
@@ -1,9 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
opencv-python
|
| 3 |
-
transformers
|
| 4 |
torch
|
| 5 |
-
tensorflow
|
| 6 |
torchvision
|
| 7 |
-
timm
|
| 8 |
ultralytics
|
| 9 |
Pillow
|
|
|
|
| 1 |
+
spaces
|
|
|
|
|
|
|
| 2 |
torch
|
|
|
|
| 3 |
torchvision
|
|
|
|
| 4 |
ultralytics
|
| 5 |
Pillow
|